- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Allam, Ahmed (4)
-
Erturk, Alper (4)
-
Sabra, Karim (3)
-
Allam, A. (1)
-
Erturk, A. (1)
-
Sabra, K. (1)
-
Sabra, Karim G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Allam, A.; Sabra, K.; Erturk, A. (, ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems)
-
Allam, Ahmed; Sabra, Karim; Erturk, Alper (, Physical Review Applied)
-
Allam, Ahmed; Sabra, Karim G.; Erturk, Alper (, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control)
-
Allam, Ahmed; Sabra, Karim; Erturk, Alper; Erturk, Alper (, Proceedings of SPIE Smart Structures/NDE Active and Passive Smart Structures and Integrated Systems XIII)Piezoelectric transduction has lately been employed in wireless acoustic power transfer (APT) for powering electronic components that cannot be accessed easily, such as deep-implanted medical devices. Typically, the axial (or thickness) vibration mode of piezoelectric materials is used to generate acoustic waves that propagate through a medium, which are then converted back into electricity and delivered to an electrical load at the receiver end. The piezoelectric receiver can have various aspect ratios (length/diameter) in a given APT application. This work aims to develop and compare various models, such as the classical theory, Rayleigh’s theory, and Bishop’s theory, as well as finite-element model simulations, for different aspect ratios with an emphasis on those with comparable dimensions. Following analytical modeling and numerical simulation efforts, both in air and fluid loaded impedance frequency response functions are compared to report the valid aspect ratio ranges of the respective theories and their limitations, along with comparisons against experiments.more » « less
An official website of the United States government
