skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1728358

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. All existing models to forecast the corrosion performance of reinforced concrete structures exposed to chloride environments are based on one common theoretical concept, namely, a chloride threshold, as a sharply defined trigger for corrosion, followed by a period of active corrosion. We critically review the resulting treatment of corrosion initiation and propagation as two distinct, successive stages. We conclude that this concept presents a major barrier for developing reliable corrosion forecast models, and that a new approach is needed. In reality, steel corrosion in concrete is a continuous process, that is, rarely separable into uncoupled, sequential phases. We propose that the focus be placed on the quantification of the time- and space-variant corrosion rate from the moment steel is placed in concrete until it reaches the end of the service life. To achieve this, a multi-scale and multi-disciplinary approach is required to combine the scientific and practical contributions from materials science, corrosion science, cement/concrete research, and structural engineering. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)