skip to main content


Search for: All records

Award ID contains: 1729149

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Germanium telluride is a high performing thermoelectric material that additionally serves as a base for alloys such as GeTe–AgSbTe 2 and GeTe–PbTe. Such performance motivates exploration of other GeTe alloys in order understand the impact of site substitution on electron and phonon transport. In this work, we consider the root causes of the high thermoelectric performance material Ge 1− x Mn x Te. Along this alloy line, the crystal structure, electronic band structure, and electron and phonon scattering all depend heavily on the Mn content. Structural analysis of special quasirandom alloy structures indicate the thermodynamic stability of the rock salt phase over the rhombohedral phase with increased Mn incorporation. Effective band structure calculations indicate band convergence, the emergence of new valence band maxima, and strong smearing at the band edge with increased Mn content in both phases. High temperature measurements on bulk polycrystalline samples show a reduction in hole mobility and a dramatic increase in effective mass with respect to increasing Mn content. In contrast, synthesis as a function of tellurium chemical potential does not significantly impact electronic properties. Thermal conductivity shows a minimum near the rhombohedral to cubic phase transition, while the Mn Ge point defect scattering is weak as indicated by the low K L dependence on the Ge–Mn fraction (Fig. 10). From this work, alloys near this phase transition show optimal performance due to low thermal conductivity, moderate effective mass, and low scattering rates compared to Mn-rich compositions. 
    more » « less
  2. Valley degeneracy is a key feature of the electronic structure that benefits the thermoelectric performance of a material. Despite recent studies which claim that high valley degeneracy can be achieved with inverted bands, our analysis of rock-salt IV–VI compounds using first-principles calculations and k · p perturbation theory demonstrates that mere band inversion is an insufficient condition for high valley degeneracy; rather, there is a critical degree to which the bands must be inverted to induce multiple carrier pockets. The so-called “band inversion parameter” is formalized as a chemically-tunable property, offering a design route to achieving high valley degeneracy in compounds with inverted bands. We predict that the valley degeneracy of rock-salt IV–VI compounds can be increased from N V = 4 to N V = 24, which could result in a corresponding increase in the thermoelectric figure of merit zT . 
    more » « less
  3. Diamond like semiconductors (DLS) have emerged as candidates for thermoelectric energy conversion. Towards understanding and optimizing performance, we present a comprehensive investigation of the electronic properties of two DLS phases, quaternary Cu 2 HgGeTe 4 and related ordered vacancy compound Hg 2 GeTe 4 , including thermodynamic stability, defect chemistry, and transport properties. To establish the thermodynamic link between the related but distinct phases, the stability region for both is visualized in chemical potential space. In spite of their similar structure and bonding, we show that the two materials exhibit reciprocal behaviors for dopability. Cu 2 HgGeTe 4 is degenerately p-type in all environments despite its wide stability region, due to the presence of low-energy acceptor defects V Cu and Cu Hg and is resistant to extrinsic n-type doping. Meanwhile Hg 2 GeTe 4 has a narrow stability region and intrinsic behavior due to the relatively high formation energy of native defects, but presents an opportunity for bi-polar doping. While these two compounds have similar structure, bonding, and chemical constituents, the reciprocal nature of their dopability emerges from significant differences in band edge positions. A Brouwer band diagram approach is utilized to visualize the role of native defects on carrier concentrations, dopability, and transport properties. This study elucidates the doping asymmetry between two solid-solution forming DLS phases Cu 2 HgGeTe 4 and Hg 2 GeTe 4 by revealing the defect chemistry of each compound, and suggests design strategies for defect engineering of DLS phases. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Doping remains a bottleneck in discovering novel functional materials for applications such as thermoelectrics (TE) and photovoltaics. The current computational approach to materials discovery is to identify candidates by predicting the functional properties of a pool of known materials, and hope that the candidates can be appropriately doped. What if we could “design” new materials that have the desired functionalities and doping properties? In this work, we use an approach, wherein we perform chemical replacements in a prototype structure, to realize doping by design. We hypothesize that the doping characteristics and functional performance of the prototype structure are translated to the new compounds created by chemical replacements. Discovery of new n-type Zintl phases is desirable for TE; however, n-type Zintl phases are a rarity. We demonstrate our doping design strategy by discovering 7 new, previously-unreported ABX 4 Zintl phases that adopt the prototypical KGaSb 4 structure. Among the new phases, we computationally confirm that NaAlSb 4 , NaGaSb 4 and CsInSb 4 are n-type dopable and potentially exhibit high n-type TE performance, even exceeding that of KGaSb 4 . Our structure prototyping approach offers a promising route to discovering new materials with designed doping and functional properties. 
    more » « less