skip to main content

Search for: All records

Award ID contains: 1730449

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.

    more » « less
  2. Abstract

    Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyiet al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as ⪅ 7.5 × 10−4while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon–Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as ⪅ 1.2 × 10−3. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.

    more » « less
  3. Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) "Introduction to Quantum Computing for Everyone." This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden. 
    more » « less
    Free, publicly-accessible full text available March 2, 2024
  4. Free, publicly-accessible full text available January 27, 2024
  5. Free, publicly-accessible full text available January 27, 2024
  6. Free, publicly-accessible full text available January 27, 2024
  7. Free, publicly-accessible full text available January 27, 2024
  8. We introduce Qunity, a new quantum programming language designed to treat quantum computing as a natural generalization of classical computing. Qunity presents a unified syntax where familiar programming constructs can have both quantum and classical effects. For example, one can use sum types to implement the direct sum of linear operators, exception-handling syntax to implement projective measurements, and aliasing to induce entanglement. Further, Qunity takes advantage of the overlooked BQP subroutine theorem, allowing one to construct reversible subroutines from irreversible quantum algorithms through the uncomputation of "garbage" outputs. Unlike existing languages that enable quantum aspects with separate add-ons (like a classical language with quantum gates bolted on), Qunity provides a unified syntax and a novel denotational semantics that guarantees that programs are quantum mechanically valid. We present Qunity's syntax, type system, and denotational semantics, showing how it can cleanly express several quantum algorithms. We also detail how Qunity can be compiled into a low-level qubit circuit language like OpenQASM, proving the realizability of our design. 
    more » « less
    Free, publicly-accessible full text available January 9, 2024
  9. We present a quantum compilation algorithm that maps Clifford encoders, an equivalence class of quantum circuits that arise universally in quantum error correction, into a representation in the ZX calculus. In particular, we develop a canonical form in the ZX calculus and prove canonicity as well as efficient reducibility of any Clifford encoder into the canonical form. The diagrams produced by our compiler explicitly visualize information propagation and entanglement structure of the encoder, revealing properties that may be obscured in the circuit or stabilizer-tableau representation 
    more » « less
    Free, publicly-accessible full text available January 3, 2024
  10. Classical computing plays a critical role in the advancement of quantum frontiers in the NISQ era. In this spirit, this work uses classical simulation to bootstrap Variational Quantum Algorithms (VQAs). VQAs rely upon the iterative optimization of a parameterized unitary circuit (ansatz) with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to classically choose the VQA ansatz initial parameters to be as close to optimal as possible to improve VQA accuracy and accelerate their convergence on today’s devices. This work tackles the problem of finding a good ansatz initialization, by proposing CAFQA, a Clifford Ansatz For Quantum Accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation. The resulting initial states always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and enable high-accuracy VQA estimations. CAFQA is well-suited to classical computation because: a) Clifford-only quantum circuits can be exactly simulated classically in polynomial time, and b) the discrete Clifford space is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation (up to 18 qubits), CAFQA’s Clifford Ansatz achieves a mean accuracy of nearly 99% and recovers as much as 99.99% of the molecular correlation energy that is lost in Hartree-Fock initialization. CAFQA achieves mean accuracy improvements of 6.4x and 56.8x, over the state-of-the-art, on different metrics. The scalability of the approach allows for preliminary ground state energy estimation of the challenging chromium dimer (Cr2) molecule. With CAFQA’s high-accuracy initialization, the convergence of VQAs is shown to accelerate by 2.5x, even for small molecules. Furthermore, preliminary exploration of allowing a limited number of non-Clifford (T) gates in the CAFQA framework, shows that as much as 99.9% of the correlation energy can be recovered at bond lengths for which Clifford-only CAFQA accuracy is relatively limited, while remaining classically simulable. 
    more » « less
    Free, publicly-accessible full text available December 19, 2023