skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1730695

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While artificial intelligence and machine learning (AI/ML) frameworks gain prominence in science and engineering, most researchers face significant challenges in adopting complex AI/ML workflows to campus and national cyberinfrastructure (CI) environments. Data from the Texas A&M High Performance Computing (HPRC) researcher training program indicate that researchers increasingly want to learn how to migrate and work with their pre-existing AI/ML frameworks on large scale computing environments. Building on the continuing success of our work in developing innovative pedagogical approaches for CI- training approaches, we expand CI-infused pedagogical approaches to teach technology-based AI and data sciences. We revisit the pedagogical approaches used in the decades-old tradition of laboratories in the Physical Sciences that taught concepts via experiential learning. Here, we structure a series of exercises on interactive computing environments that give researchers immediate hands-on experience in AI/ML and data science technologies that they will use as they work on larger CI resources. These exercises, called “tech-labs,” assume that participating researchers are familiar with AI/ML approaches and focus on hands-on exercises that teach researchers how to use these approaches on large-scale CI. The tech-labs offer four consecutive sessions, each introducing a learner to specific technologies offered in CI environments for AI/ML and data workflows. We report on our tech-lab offered for Python-based AI/ML approaches during which learners are introduced to Jupyter Notebooks followed by exercises using Pandas, Matplotlib, Scikit-learn, and Keras. The program includes a series of enhancements such as container support and easy launch of virtual environments in our Web-based computing interface. The approach is scalable to programs using a command line interface (CLI) as well. In all, the program offers a shift in focus from teaching AI/ML toward increasing adoption of AI/ML in large-scale CI. 
    more » « less
  2. null (Ed.)
  3. Developments in large scale computing environments have led to design of workflows that rely on containers and analytics platform that are well supported by the commercial cloud. The National Science Foundation also envisions a future in science and engineering that includes commercial cloud service providers (CSPs) such as Amazon Web Services, Azure and Google Cloud. These twin forces have made researchers consider the commercial cloud as an alternative option to current high performance computing (HPC) environments. Training and knowledge on how to migrate workflows, cost control, data management, and system administration remain some of the commonly listed concerns with adoption of cloud computing. In an effort to ameliorate this situation, CSPs have developed online and in-person training platforms to help address this problem. Scalability, ability to impart knowledge, evaluating knowledge gain, and accreditation are the core concepts that have driven this approach. Here, we present a review of our experience using Google’s Qwiklabs online platform for remote and in-person training from the perspective of a HPC user. For this study, we completed over 50 online courses, earned five badges and attended a one-day session. We identify the strengths of the approach, identify avenues to refine them, and consider means to further community engagement. We further evaluate the readiness of these resources for a cloud-curious researcher who is familiar with HPC. Finally, we present recommendations on how the large scale computing community can leverage these opportunities to work with CSPs to assist researchers nationally and at their home institutions. 
    more » « less
  4. Summer computing camps for high school students are rapidly becoming a staple at High Performance Computing (HPC) centers and Computer Science departments around the country. Developing complexity in education in these camps remains a challenge. Here, we present a report about the implementation of such a program. The Summer Computing Academy (SCA) at is a weeklong cybertraining1 program offered to high school students by High Performance Research Computing (HPRC) at Texas A&M University (Texas A&M; TAMU). The Summer Computing Academy effectively uses cloud computing paradigms, artificial intelligence technologies coupled with Raspberry Pi micro-controllers and sensors to demonstrate “computational thinking”. The program is steeped in well- reviewed pedagogy; the refinement of the educational methods based on constant assessment is a critical factor that has contributed to its success. The hands-on exercises included in the program have received rave reviews from parents and students alike. The camp program is financially self-sufficient and has successfully broadened participation of underrepresented groups in computing by including diverse groups of students. Modules from the SCA program may be implemented at other institutions with relative ease and promote cybertraining efforts nationwide. 
    more » « less