skip to main content


Search for: All records

Award ID contains: 1731909

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Given the need for descriptive and increasingly mechanistic morphological analyses, contrast‐enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro‐level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA‐enhanced microCT.

    Results

    Our protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution.

    Conclusion

    These protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position.

     
    more » « less
  2. Abstract

    Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.

     
    more » « less