skip to main content

Search for: All records

Award ID contains: 1733071

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Physical properties of multi-orbital materials depend not only on the strength of the effective interactions among the valence electrons but also on their type. Strong correlations are caused by either Mott physics that captures the Coulomb repulsion among charges, or Hund physics that aligns the spins in different orbitals. We identify four energy scales marking the onset and the completion of screening in orbital and spin channels. The differences in these scales, which are manifest in the temperature dependence of the local spectrum and of the charge, spin and orbital susceptibilities, provide clear signatures distinguishing Mott and Hund physics.more »We illustrate these concepts with realistic studies of two archetypal strongly correlated materials, and corroborate the generality of our conclusions with a model Hamiltonian study.

    « less
  2. Free, publicly-accessible full text available January 6, 2023
  3. Abstract Understanding characteristic energy scales is a fundamentally important issue in the study of strongly correlated systems. In multiband systems, an energy scale is affected not only by the effective Coulomb interaction but also by the Hund’s coupling. Direct observation of such energy scale has been elusive so far in spite of extensive studies. Here, we report the observation of a kink structure in the low energy dispersion of NiS 2− x Se x and its characteristic evolution with x , by using angle resolved photoemission spectroscopy. Dynamical mean field theory calculation combined with density functional theory confirms that thismore »kink originates from Hund’s coupling. We find that the abrupt deviation from the Fermi liquid behavior in the electron self-energy results in the kink feature at low energy scale and that the kink is directly related to the coherence-incoherence crossover temperature scale. Our results mark the direct observation of the evolution of the characteristic temperature scale via kink features in the spectral function, which is the hallmark of Hund’s physics in the multiorbital system.« less
    Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available September 1, 2022
  5. Correction for ‘Measured and simulated thermoelectric properties of FeAs 2−x Se x ( x = 0.30–1.0): from marcasite to arsenopyrite structure’ by Christopher J. Perez et al. , Mater. Adv. , 2020, 1 , 1390–1398, DOI: 10.1039/D0MA00371A.