A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the network, such as a weighted average of locally detectable parameters. In the noiseless case, continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision of parameter estimation relative to the precision attainable by a network without shared entanglement; for an entangled protocol, the root mean square estimation error scales like 1/
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract M with the numberM of sensing nodes, the so-called Heisenberg scaling, while for protocols without entanglement, the error scales like . However, in the presence of loss and other noise sources, although multipartite entanglement still has some advantages for sensing displacements and phases, the scaling of the precision withM is less favorable. In this paper, we show that using CV error correction codes can enhance the robustness of sensing protocols against imperfections and reinstate Heisenberg scaling up to moderate values ofM . Furthermore, while previous distributed sensing protocols could measure only a single quadrature, we construct a protocol in which both quadratures can be sensed simultaneously. Our work demonstrates the value of CV error correction codes in realistic sensing scenarios. -
Abstract Embedding tunable quantum emitters in a photonic bandgap structure enables control of dissipative and dispersive interactions between emitters and their photonic bath. Operation in the transmission band, outside the gap, allows for studying waveguide quantum electrodynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite-range emitter–emitter interactions via bound photonic states. Here, we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (
λ /60). The metamaterial is formed by periodically loading a transmission line with compact, low-loss, low-disorder lumped-element microwave resonators. Tuning the qubit frequency in the vicinity of a band-edge with a group index ofn g = 450, we observe an anomalous Lamb shift of −28 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to short-lived radiatively damped and long-lived metastable qubit states. -
The permanent is pivotal to both complexity theory and combinatorics. In quantum computing, the permanent appears in the expression of output amplitudes of linear optical computations, such as in the Boson Sampling model. Taking advantage of this connection, we give quantum-inspired proofs of many existing as well as new remarkable permanent identities. Most notably, we give a quantum-inspired proof of the MacMahon master theorem as well as proofs for new generalizations of this theorem. Previous proofs of this theorem used completely different ideas. Beyond their purely combinatorial applications, our results demonstrate the classical hardness of exact and approximate sampling of linear optical quantum computations with input cat states.more » « less
-
We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. Such instances include approximating the ground state of spin glasses and MaxCut on Erdös-Rényi graphs. We also provide an efficient randomized rounding procedure that converts approximately optimal SDP solutions into approximations of the original quadratic optimization problem.more » « less