skip to main content

Search for: All records

Award ID contains: 1734134

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Many patients with mental disorders take dietary supplement, but their use patterns remain unclear. In this study, we developed a method to detect signals of associations between dietary supplement intake and mental disorder in Twitter data. We developed an annotated dataset and trained a convolutional neural network classifier that can identify language use pattern of dietary supplement intake with an F1-score of 0.899, a precision of 0.900, and a recall of 0.900. Using the classifier, we discovered that melatonin and vitamin D were the most commonly used supplements among Twitter users who self-diagnosed mental disorders. Sentiment analysis using Linguistic Inquiry and Word Count has shown that among Twitter users who posted mental disorder self-diagnosis, users who indicated supplement intake are more active and express more negative emotions and fewer positive emotions than those who have not mentioned supplement intake.