skip to main content


Search for: All records

Award ID contains: 1734399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This article presents the design process of a supernumerary wearable robotic forearm (WRF), along with methods for stabilizing the robot’s end-effector using human motion prediction. The device acts as a lightweight “third arm” for the user, extending their reach during handovers and manipulation in close-range collaborative activities. It was developed iteratively, following a user-centered design process that included an online survey, contextual inquiry, and an in-person usability study. Simulations show that the WRF significantly enhances a wearer’s reachable workspace volume, while remaining within biomechanical ergonomic load limits during typical usage scenarios. While operating the device in such scenarios, the user introduces disturbances in its pose due to their body movements. We present two methods to overcome these disturbances: autoregressive (AR) time series and a recurrent neural network (RNN). These models were used for forecasting the wearer’s body movements to compensate for disturbances, with prediction horizons determined through linear system identification. The models were trained offline on a subset of the KIT Human Motion Database, and tested in five usage scenarios to keep the 3D pose of the WRF’s end-effector static. The addition of the predictive models reduced the end-effector position errors by up to 26% compared to direct feedback control. 
    more » « less
  2. null (Ed.)
  3. For a wearable robotic arm to autonomously assist a human, it has to be able to stabilize its end-effector in light of the human’s independent activities. This paper presents a method for stabilizing the end-effector in planar assembly and pick-and-place tasks. Ideally, given an accurate positioning of the end effector and the wearable robot attachment point, human disturbances could be compensated by using a simple feedback control strategy. Realistically, system delays in both sensing and actuation suggest a predictive approach. In this work, we characterize the actuators of a wearable robotic arm and estimate these delays using linear models. We then consider the motion of the human arm as an autoregressive process to predict the deviation in the robot’s base position at a time horizon equivalent to the estimated delay. Generating set points for the end-effector using this predictive model, we report reduced position errors of 19.4% (x) and 20.1% (y) compared to a feedback control strategy without prediction. 
    more » « less
  4. This paper presents the design of a wearable robotic forearm for close-range human-robot collaboration. The robot's function is to serve as a lightweight supernumerary third arm for shared workspace activities. We present a functional prototype resulting from an iterative design process including several user studies. An analysis of the robot's kinematics shows an increase in reachable workspace by 246 % compared to the natural human reach. The robot's degrees of freedom and range of motion support a variety of usage scenarios with the robot as a collaborative tool, including self-handovers, fetching objects while the human's hands are occupied, assisting human-human collaboration, and stabilizing an object. We analyze the bio-mechanical loads for these scenarios and find that the design is able to operate within human ergonomic wear limits. We then report on a pilot human-robot interaction study that indicates robot autonomy is more task-time efficient and preferred by users when compared to direct voice-control. These results suggest that the design presented here is a promising configuration for a lightweight wearable robotic augmentation device, and can serve as a basis for further research into human-wearable collaboration. 
    more » « less
  5. This paper presents the design of a wearable robotic forearm that provides the user with an assistive third hand, along with a study of interaction scenarios for the design. Technical advances in sensors, actuators, and materials have made wearable robots feasible for personal use, but the interaction with such robots has not been sufficiently studied. We describe the development of a working prototype along with three usability studies. In an online survey we find that respondents presented with images and descriptions of the device see its use mainly as a functional tool in professional and military contexts. A subsequent contextual inquiry among building construction workers reveals three themes for user needs: extending a worker's reach, enhancing their safety and comfort through bracing and stabilization, and reducing their cognitive load in repetitive tasks. A subsequent laboratry study in which participants wear a working prototype of the robot finds that they prioritize lowered weight and enhanced dexterity, seek adjustable autonomy and transparency of the robot's intent, and prefer a robot that looks distinct from a human arm. These studies inform design implications for further development of wearable robotic arms. 
    more » « less