Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On the night of 18–19 October 2018, sodium resonance lidar measurements show the presence of overturning in the mesospheric sodium layer. Two independent tracers, sodium mixing ratio and potential temperature, derived from resonance and Rayleigh lidar measurements, reveal that vertical spreading of the sodium mixing ratio contours and a layer of convective instability coincide with this overturning. Analysis of lidar measurements also reveals the presence of gravity waves that propagate upward, are saturated, and dissipate at the height of the convective instability. The vertical spreading is analyzed in terms of turbulent diffusive transport using a model based on material continuity of sodium. Estimates of the turbulent eddy diffusion coefficient, K, and energy dissipation rate,εare derived from the transport model. The energy dissipated by the gravity waves is also calculated and found to be sufficient to generate the turbulence. We consider three other examples of overturning, instability and spreading on the nights of: 17–18 February 2009, 25–26 January 2015, and 8–9 October 2018. For all four events we find that the values of K (∼1,000 m2/s) are larger and the values ofε(∼10–100 mW/kg) are of similar magnitude to those values typically reported by ionization gauge measurements. These examples also reveal that higher levels of turbulent mixing are consistently found in regions of lower stability.more » « less
-
Abstract Though the Kelvin‐Helmholtz instability (KHI) has been extensively observed in the mesosphere, where breaking gravity waves produce the conditions required for instability, little has been done to describe quantitatively this phenomenon in detail in the mesopause and lower thermosphere, which are associated with the long‐lived shears at the base of this statically stable region. Using trimethylaluminum (TMA) released from two sounding rockets launched on 26 January 2018, from Poker Flat Research Range in Alaska, the KHI was observed in great detail above 100 km. Two sets of rocket measurements, made 30 min apart, show strong winds (predominantly meridional and up to 150 ms−1) and large total shears (90 ms−1 km−1). The geomagnetic activity was low in the hours before the launches, confirming that the enhanced shears that triggered the KHI are not a result of the E‐region auroral jets. The four‐dimensional (three‐dimensional plus time) estimation of KHI billow features resulted in a wavelength, eddy diameter, and vertical length scale of 9.8, 5.2, and 3.8 km, respectively, centered at 102‐km altitude. The vertical and horizontal root‐mean‐square velocities measured 29.2 and 42.5 ms−1, respectively. Although the wind structure persisted, the KHI structure changed significantly with time over the interval separating the two launches, being present only in the first launch. The rapid dispersal of the TMA cloud in the instability region was evidence of enhanced turbulent mixing. The analysis of the Reynolds and Froude numbers (Re = 7.2 × 103andFr = 0.29, respectively) illustrates the presence of turbulence and weak stratification of the flow.more » « less
An official website of the United States government
