skip to main content


Search for: All records

Award ID contains: 1734786

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreakerOden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica) in separate experiments under approximately 400, 650, 1000, and 2000 μatm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues.

     
    more » « less
  2. We assessed the distribution of biota (autotrophs and heterotrophs) and associated carbonate chemistry variables in Arctic sea ice at latitudes >82°N during late summer and early autumn 2018. The sampled sea ice was relatively thick (average 1.4 m) with variable snow cover (mean 7 cm) and low bulk salinities throughout. Most measured variables, including carbonate chemistry parameters, were low in the upper half of the ice cores, but increased with depth. Measurements of particulate organic carbon (POC), chlorophyll a (chl a) , bacterial abundance, and particulate extracellular polysaccharide (pEPS) in the cores strongly suggested that detrital carbon was the major particulate organic pool. Near the ice-water interface, autotrophic material comprised ca. 50% of the total POC, whereas pEPS and bacterial carbon accounted for ca. 8 and 1% of the total POC, respectively. Under-ice water was nutrient poor, providing only a small input of nutrients to support autotrophic growth, at least during the time of our sampling. While the Arctic Ocean has substantial interannual variability in sea-ice concentration and thickness, these measurements enrich the available database and suggest that during years when autumn sea ice is >1 m thick, sea-ice biota are limited in activity and biomass. 
    more » « less