skip to main content


Search for: All records

Award ID contains: 1735512

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract The Oligocene Latir magmatic center in northern New Mexico is an exceptionally well-exposed volcanoplutonic complex that hosts a variety of magmatic-hydrothermal deposits, ranging from relatively deep, F-rich porphyry Mo mineralization to shallower epithermal deposits. We present new whole-rock chemical and isotopic data for plutonic rocks from the Latir magmatic center, including extensive sampling of drill core samples of intrusive rocks from the Questa porphyry Mo deposit. These data document temporal chemical trends of porphyry-related mineralization that occurred after caldera-forming magmatism and during postcaldera batholith assembly. Silicic magmas were generated multiple times throughout the history of the Latir magmatic center, but few are associated with the formation of a mineral deposit. Whole-rock trace element ratios and Sr, Nd, and Pb isotope compositions vary throughout the protracted history of silicic magmatism. The caldera-forming ignimbrite and early phase of postcaldera intrusions are unmineralized, more enriched in high field strength elements, and generally contain less radiogenic Sr and Pb and more radiogenic Nd than later intrusions. The Questa porphyry Mo deposit formed immediately after the most isotopically primitive phase of the batholith was assembled, ruling out simple reworking of juvenile mantle-derived crust as the source for mineralizing magmas. Rhyolite dikes associated with polymetallic sulfide deposits intruded ~800 k.y. after Mo mineralization, and Nd isotope data indicate that these dikes are associated with different batches of magma and are unrelated to the Mo-mineralizing intrusions at the Questa mine. Together, these data indicate that the source of magmas changed significantly throughout the 10-m.y. history of the magmatic center. We assess multiple genetic models for porphyry-related magmatism against this data set, favoring models with discrete periods of magma genesis from a deep hybridized zone in the lower crust giving rise to the punctuated periods of mineralization. These observations suggest that the formation of mineral deposits within a central magmatic locus is likely the result of the piecemeal assembly of individual hydrothermal-magmatic systems, and that distal and younger polymetallic mineralization commonly observed near known porphyry deposits represents decoupled processes. 
    more » « less
  4. Abstract Recent U-Pb high-precision geochronological studies have shown rapid emplacement of the intrusive doleritic component of the Karoo Large Igneous Province (KLIP) in Southern Africa. However, these studies focused on a relatively small geographic and altitudinal region of the KLIP. Additionally, the timing of initiation of extrusive volcanism, preserved in the Drakensberg-Lesotho highlands and its relationship to the intrusive suite, has only been imprecisely constrained by Ar-Ar dates. Here, we present new high-resolution U-Pb zircon ages on dolerite sills and dykes from across the central eastern Karoo Basin (South Africa) at elevations between mean sea level and 1 560 m, as well as U-Pb detrital zircon data that can be used to estimate the maximum age of volcaniclastic deposition near the base of the extrusive component of the KLIP. Dolerite samples were taken across two areas: (1) thick dykes exposed along the coast of the Indian Ocean to ~1 600 m flanking the Drakensberg Escarpment in the Eastern Cape; and (2) sills between 20 and 220 m below surface, in a borehole core within the interior of the Karoo Basin, 400 km hinterland from the coastline. Our estimated dolerite emplacement ages span a range of ca. 80 thousand years (Kyr), between 183.122 ± 0.029/-0.061 and 183.042 ± 0.042/-0.072 million years ago (Ma), and fall within the 331 +60/-54 Kyr age range previously established for magmatism related to the KLIP, despite the marked increase in sampling coverage in terms of area and altitude in this study. Therefore, KLIP geochronology is consistent with other LIPS such as the Siberian and Deccan Traps that supports the hypothesis of rapid emplacement timescales (<1 Myr). Additionally, these data are consistent with, but better delineate that the KLIP in southern Africa appears to be ca. 500 Kyr older than the main phase of magmatism in the Ferrar LIP of Antarctica. Detrital zircons from the basal volcanic sequence of the Drakensberg Group exhibit age peaks at ca. 1 and 0.5 Ga, typical of the surrounding Namaqua-Natal and Pan-African basement rocks, as well as younger peaks at ca. 260 and 200 Ma that likely relate to source provenances from south-western Gondwana and reworking of the Karoo Supergroup sedimentary rocks. High-precision U-Pb dates of the youngest zircon grains result in a maximum depositional age for the basal pyroclastics of 185.25 ± 0.25 Ma, allowing for a ca. 2 Myr offset with the intrusive Karoo dolerite suite. 
    more » « less
  5. Abstract A tephra-rich cherty-clayey Famennian succession within the major Brzeźnica olistostrome in the Bardo Mountains, Central Sudetes, SW Poland, preserves a record of the lost ocean later incorporated into the Variscan orogenic belt. Fluctuating but mostly oligotrophic regimes and low primary production levels were influenced by weak up-welling below the perennial oxygen minimum zone, which controlled the interplay between biosiliceous and siliciclastic deposition in the oceanic basin, with episodic oxygen deficiency. The Hangenberg Black Shale has been identified in this oceanic setting based on its characteristics described worldwide (including mercury enrichments). A tectonic uplift of the sediment source area near the Devonian-Carboniferous boundary, recorded in the distinguishing provenance signal of old continental crust, was paired with a global transgression, anoxia, and volcanic episode in an interglacial interval. Assuming paleogeographic affinity with the Bavarian facies of the Saxothuringian terrane, we interpret the allochthonous sediments as part of an accretionary prism that was gravitationally redeposited into the late orogenic basin in front of advancing Variscan nappes. The oceanic basin parental to the Bardo pelagic succession is therefore thought to represent a tract of the waning Saxothuringian Ocean in the Peri-Gondwanan paleogeographic domain that was eventually subducted beneath the Brunovistulian margin of Laurussia. The sediments of the Bardo Ocean basin also include a distal record of Famennian explosive volcanic activity that was likely related to a continental magmatic arc whose remnants are preserved as the Vrbno Group of the East Sudetes. 
    more » « less
  6. Abstract Silicic magmas within large igneous provinces (LIPs) are understudied relative to volumetrically dominant mafic magmas despite their prevalence and possible contribution to LIP-induced environmental degradation. In the 66 Ma Deccan LIP (India), evolved magmatism is documented, but its geographic distribution, duration, and significance remain poorly understood. Zircons deposited in weathered Deccan lava flow tops (“red boles”) offer a means of indirectly studying potentially widespread, silicic, explosive volcanism spanning the entire period of flood basalt eruptions. We explored this record through analysis of trace elements and Hf isotopes in zircon crystals previously dated by U–Pb geochronology. Our results show that zircon populations within individual red boles fingerprint distinct volcanic sources that likely developed in an intraplate setting on cratonic Indian lithosphere. However, our red bole zircon geochemical and isotopic characteristics do not match those from previously studied silicic magmatic centers, indicating that they must derive from yet undiscovered or understudied volcanic centers associated with the Deccan LIP. 
    more » « less
  7. Abstract Lithium is an economically important element that is increasingly extracted from brines accumulated in continental basins. While a number of studies have identified silicic magmatic rocks as the ultimate source of dissolved brine lithium, the processes by which Li is mobilized remain poorly constrained. Here we focus on the potential of low-temperature, post-eruptive processes to remove Li from volcanic glass and generate Li-rich fluids. The rhyolitic glasses in this study (from the Yellowstone-Snake River Plain volcanic province in western North America) have interacted with meteoric water emplacement as revealed by textures and a variety of geochemical and isotopic signatures. Indices of glass hydration correlate with Li concentrations, suggesting Li is lost to the water during the water-rock interaction. We estimate the original Li content upon deposition and the magnitude of Li depletion both by direct in situ glass measurements and by applying a partition-coefficient approach to plagioclase Li contents. Across our whole sample set (19 eruptive units spanning ca. 10 m.y.), Li losses average 8.9 ppm, with a maximum loss of 37.5 ppm. This allows estimation of the dense rock equivalent of silicic volcanic lithologies required to potentially source a brine deposit. Our data indicate that surficial processes occurring post-eruption may provide sufficient Li to form economic deposits. We found no relationship between deposit age and Li loss, i.e., hydration does not appear to be an ongoing process. Rather, it occurs primarily while the deposit is cooling shortly after eruption, with δ18O and δD in our case study suggesting a temperature window of 40° to 70°C. 
    more » « less
  8. null (Ed.)
    Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province. 
    more » « less