skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1737127

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Sea star wasting disease (SSWD) is a condition that has affected asteroids for over 120 years, yet mechanistic understanding of this wasting etiology remains elusive. We investigated temporal virome variation in two Pisaster ochraceus specimens that wasted in the absence of external stimuli and two specimens that did not experience SSWD for the duration of our study, and compared viromes of wasting lesion margin tissues to both artificial scar margins and grossly normal tissues over time. Global assembly of all SSWD-affected tissue libraries resulted in 24 viral genome fragments represented in >1 library. Genome fragments mostly matched densoviruses and picornaviruses with fewer matching nodaviruses, and a sobemovirus. Picornavirus-like and densovirus-like genome fragments were most similar to viral genomes recovered in metagenomic study of other marine invertebrates. Read recruitment revealed only two picornavirus-like genome fragments that recruited from only SSWD-affected specimens, but neither was unique to wasting lesions. Wasting lesion margin reads recruited to a greater number of viral genotypes (i.e., richness) than did either scar tissue and grossly normal tissue reads. Taken together, these data suggest that no single viral genome fragment was associated with SSWD. Rather, wasting lesion margins may generally support viral proliferation. 
    more » « less
  2. null (Ed.)
    Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology. 
    more » « less
  3. null (Ed.)
  4. Alexandre, Gladys (Ed.)
    ABSTRACT The etiology of sea star wasting syndrome is hypothesized to be caused by a densovirus, sea star-associated densovirus (SSaDV), that has previously been reported on the Pacific and Atlantic Coasts of the United States. In this study, we reevaluated the presence of SSaDV among sea stars from the North American Atlantic Coast and in doing so discovered a novel densovirus that we have named Asterias forbesi -associated densovirus (AfaDV), which shares 78% nucleotide pairwise identity with SSaDV. In contrast to previous studies, SSaDV was not detected in sea stars from the North American Atlantic Coast. Using a variety of PCR-based techniques, we investigated the tissue tropism, host specificity, and prevalence of AfaDV among populations of sea stars at five locations along the Atlantic Coast. AfaDV was detected in three sea star species ( Asterias forbesi , Asterias rubens , and Henricia sp.) found in this region and was highly prevalent (>80% of individuals tested; n  = 134), among sampled populations. AfaDV was detected in the body wall, gonads, and pyloric caeca (digestive gland) of specimens but was not detected in their coelomic fluid. A significant difference in viral load (copies mg −1 ) was found between tissue types, with the pyloric caeca having the highest viral loads. Further investigation of Asterias forbesi gonad tissue found germ line cells (oocytes) to be virus positive, suggesting a potential route of vertical transmission. Taken together, these observations show that the presence of AfaDV is not an indicator of sea star wasting syndrome because AfaDV is a common constituent of these animals’ microbiome, regardless of health. IMPORTANCE Sea star wasting syndrome is a disease primarily observed on the Pacific and Atlantic Coasts of North America that has significantly impacted sea star populations. The etiology of this disease is unknown, although it is hypothesized to be caused by a densovirus, SSaDV. However, previous studies have not found a correlation between SSaDV and sea star wasting syndrome on the North American Atlantic Coast. This study suggests that this observation may be explained by the presence of a genetically similar densovirus, AfaDV, that may have confounded previous studies. SSaDV was not present in sea stars screened in this study, and instead, AfaDV was commonly found in sea star populations across the New England region, with no apparent signs of disease. These results suggest that sea star densoviruses may be common constituents of the animals’ microbiome, and the diversity and extent of these viruses among wild populations may be greater than previously recognized. 
    more » « less