skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1737247

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The organic carbon (Corg) stored in seagrass meadows is globally significant and could be relevant in strategies to mitigate increasing CO2 concentration in the atmosphere. Most of that stored Corg is in the soils that underlie the seagrasses. We explored how seagrass and soil characteristics vary among seagrass meadows across the geographic range of turtlegrass (Thalassia testudinum) with a goal of illuminating the processes controlling soil organic carbon (Corg) storage spanning 23° of latitude. Seagrass abundance (percent cover, biomass, and canopy height) varied by over an order of magnitude across sites, and we found high variability in soil characteristics, with Corg ranging from 0.08 to 12.59% dry weight. Seagrass abundance was a good predictor of the Corg stocks in surficial soils, and the relative importance of seagrass-derived soil Corg increased as abundance increased. These relationships suggest that first-order estimates of surficial soil Corg stocks can be made by measuring seagrass abundance and applying a linear transfer function. The relative availability of the nutrients N and P to support plant growth was also correlated with soil Corg stocks. Stocks were lower at N-limited sites than at P-limited ones, but the importance of seagrass-derived organic matter to soil Corg stocks was not a function of nutrient limitation status. This finding seemed at odds with our observation that labile standard substrates decomposed more slowly at N-limited than at P-limited sites, since even though decomposition rates were 55% lower at N-limited sites, less Corg was accumulating in the soils. The dependence of Corg stocks and decomposition rates on nutrient availability suggests that eutrophication is likely to exert a strong influence on carbon storage in seagrass meadows. 
    more » « less
  2. Climate change is impacting marine ecosystem community dynamics on a global scale. While many have assessed direct effects of climate change, indirect effects on marine ecosystems produced by biotic interactions remain poorly understood. For example, warming-induced range expansions and increased consumption rates of herbivores can lead to significant and unexpected changes in seagrass-dominated ecosystems. To better understand the threats tropicalization presents for the functioning of turtlegrass ( Thalassia testudinum ) meadows, we focused on the extensive turtlegrass beds of St. Joseph Bay, Florida in the northern Gulf of Mexico, a location with increasing numbers of tropically-associated green turtles. Our goals were to investigate experimentally how different grazing rates (natural and simulated),including high levels reflective of green turtle herbivory, coupled with nutrient supply, might alter turtlegrass structure and functioning in a higher latitude, subtropical turtlegrass meadow. We found that 4 months of varying levels of herbivory did not affect turtlegrass productivity, while 7 months of herbivory reduced percent cover, and 10 months reduced shoot density. Nutrient additions had few important effects. Ten months into the study, a massive recruitment of the herbivorous sea urchin ( Lytechinus variegatus ), whose densities reached 19 urchins/m 2 completely overgrazed our study area and a large portion of the lush turtlegrass meadows of St. Joseph Bay. While local turtlegrass overgrazing had been previously noted at these urchin densities, a total loss of seagrass in such a large area has rarely ever been recorded. Overgrazing of the kind we observed, likely a result of both urchin and increasing green turtle grazing, can result in the loss of many key ecosystem services. As tropicalization continues, understanding how changes in biotic interactions, such as increased herbivory, affect higher latitude seagrass meadows will be necessary for their proper management and conservation. 
    more » « less