skip to main content


Search for: All records

Award ID contains: 1737364

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Phenotypic features define feeding selectivity in planktonic predators and therefore determine energy flow through food webs. In current‐feeding cnidarian hydromedusae, swimming and predation are coupled such that swimming also brings prey into contact with feeding structures. Fluid mechanical disturbances may initiate escape responses by flow‐sensing prey. Previous studies have not considered how fluid signals define the trophic niche of current‐feeding gelatinous predators. We used the hydromedusaClytia gregariato determine (1) how passive (sinking) and active (swimming) feeding behavior affects pre‐encounter responses of prey to the medusae‐induced fluid motion, and (2) how prey responses affect the medusae's ingestion efficiencies. Videography of the predation process showed that passive prey such as invertebrate larvae were ingested during both feeding behaviors, whereas flow‐sensing prey such as copepods escaped the predator's active feeding behavior, but were unable to detect the predator's passive sinking behavior and were ingested (KWX2= 19.8246, df = 4,p < 0.001). Flow visualizations using particle image velocimetry (PIV) showed fluid deformation values during passive feeding below threshold values that trigger escape responses of copepods. To address whether fluid signals mediate prey capture, we compared fluid signals produced by three hydromedusae with different diets.Aequorea victoriaandMitrocoma cellulariaproduced higher deformation thanC. gregaria(two‐way ANOVA,F2,52= 5.532,p= 0.007), which explains their previously documented negative selection for flow‐sensing prey like copepods. Through the analysis of hydromedusan feeding behaviors and pre‐encounter prey escapes, we provide evidence that fluid signatures shape the trophic niches of gelatinous predators.

     
    more » « less
  2. null (Ed.)
    Abstract Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities. 
    more » « less
  3. null (Ed.)
    Abstract Cnidarian jellyfish can be dominant players in the food webs of highly productive Eastern Boundary Currents (EBC). However, the trophic role of inconspicuous hydromedusae in EBCs has traditionally been overlooked. We collected mesozooplankton from five stations along two cross-shelf transects in the Northern California Current (NCC) during winter and summer of 2018–2019. We analyzed gut contents of 11 hydromedusan species and the prey community to (i) determine prey resource use by hydromedusae and (ii) determine temporal shifts in the trophic niche of hydromedusae, focusing on the two most collected species (Clytia gregaria and Eutonina indicans). Hydromedusae in the NCC fed mostly on copepods, appendicularians and invertebrate larvae. Nonmetric multidimensional scaling of hydromedusan diets showed seasonal shifts in prey resource driven by the abundant C. gregaria, which fed mostly on copepod eggs during winter and fed mostly on appendicularians and copepods during summer. Prey selectivity for copepod eggs increased during winter for C. gregaria and E. indicans. Intriguingly, theoretical ingestion rates show that both species acquire similar amounts of carbon during upwelling and nonupwelling conditions. Hydromedusae’s consistent presence and predation impact across seasons may lead to significant effects in carbon and energy transfer through the NCC food web. 
    more » « less
  4. The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex body forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments. 
    more » « less