skip to main content


Search for: All records

Award ID contains: 1737411

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with 2 meteorological stations, 3 thermistor arrays, an infra-red (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 m2 s-3 to 10-6 m2 s-3 for the 0 to 4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (LN) dropped below 4 facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes. 
    more » « less
  3. null (Ed.)
    Lakes and reservoirs contribute to regional carbon budgets via significant emissions of climate forcing trace gases. Here, for improved modelling, we use 8 years of floating chamber measurements from three small, shallow subarctic lakes (2010–2017, n = 1306) to separate the contribution of physical and biogeochemical processes to the turbulence-driven, diffusion-limited flux of methane (CH4) on daily to multi-year timescales. Correlative data include 9 years of surface water concentration measurements (2009–2017, n = 606), total water column storage (2009–2017, n = 1593) and in situ meteorological observations. We used the latter to compute near surface turbulence based on similarity scaling and then applied the surface renewal model to compute gas transfer velocities. Chamber fluxes averaged 6.9 ± 0.3 mg CH4 m−2 d−1 and gas transfer velocities (k600) averaged 4.0 ± 0.1 cm h−1. Chamber derived gas transfer velocities tracked the power-law wind speed relation of the model. Coefficients for the model and dissipation rates depended on shear production of turbulence, atmospheric stability, and exposure to wind. Fluxes increased with wind speed until daily average values exceeded 6.5 m s−1, at which point emissions were suppressed due to rapid water column degassing reducing the water–air concentration gradient. Arrhenius-type temperature functions of the CH4 flux (Ea‘ = 0.90 ± 0.14 eV) were robust (R2 ≥ 0.93, p < 0.01) and also applied to the surface CH4 concentration (Ea‘ = 0.88 ± 0.09 eV). These results imply that emissions were strongly coupled to production and supply to the water column. Spectral analysis indicated that on timescales shorter than a month, emissions were driven by wind shear whereas on longer timescales variations in water temperature governed the flux. Long-term monitoring efforts are essential to identify distinct functional relations that govern flux variability on timescales of weather and climate change. 
    more » « less
  4. null (Ed.)
    Changes in mixing regimes and CO2 availability may promote harmful cyanobacterial blooms in polymictic lakes and ponds globally, but the underlying mechanisms still remain unclear. We integrated results from a natural experiment comprising an average-wet year (2011) and one with heat waves (2012), a long-term meteorological dataset (1960–2010), historical phosphorus concentrations and corresponding sedimentary pigment records, to determine, on different temporal scales, the mechanistic controls of cyanobacterial blooms in a eutrophic polymictic lake. Intense warming in 2012 was associated with: 1) increased stability of the water column with buoyancy frequencies exceeding 40 cph at the surface, 2) high phytoplankton biomass in spring (up to 125 mg WW L-1), 3) reduced downward transport of heat and 4) persistently depleted epilimnetic CO2 concentrations. CO2 depletion was effectively maintained by intense uptake by phytoplankton (influx up to 30 mmol m-2 d-1) in combination with reduced carbon inputs from the watershed during dry periods. Under eutrophic conditions these effects triggered massive bloom of buoyant cyanobacteria (up to 300 mg WW L-1). Complementary evidence from polynomial regression modelling using long-term datasets revealed that warming is the most important predictor of cyanobacterial abundance during the second half of the last century explaining 78% of the observed positive trend, whereas phosphorus concentration explained only 10% thereof. Together the results from the interannual comparison and the multi-decadal record indicate that hotter and drier climates increase water column stratification and decrease CO2 availability in eutrophic polymictic lakes. This combination catalyzes blooms of buoyant cyanobacteria. 
    more » « less