skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1737876

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many complex networks in the real world have community structures – groups of well-connected nodes with important functional roles. It has been well recognized that the identification of communities bears numerous practical applications. While existing approaches mainly apply statistical or graph theoretical/combinatorial methods for community detection, in this paper, we present a novel geometric approach which  enables us to borrow powerful classical geometric methods and properties. By considering networks as geometric objects and communities in a network as a geometric decomposition, we apply curvature and discrete Ricci flow, which have been used to decompose smooth manifolds with astonishing successes in mathematics, to break down communities in networks. We  tested our method on networks with ground-truth community structures, and experimentally confirmed the effectiveness of this geometric approach. 
    more » « less