- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wong, Tan F. (2)
-
Bowyer, C. (1)
-
Green, D. (1)
-
Menendez, M. (1)
-
Shea, J. M. (1)
-
Shea, John M. (1)
-
Ward, Tyler (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report results of an experiment in applying deep Q-learning for dynamic spectrum sharing (DSS) in the Alleys of Austin scenario from the DARPA Spectrum Collaboration Challenge. This scenario mimics mobile operations in an urban environment by up to five squads (teams) of soldiers. Each team operates its own wireless network. We consider teamwise– distributed DSS, where there is no central agent to coordinate spectrum usage across teams, but spectrum usage within each team is coordinated by a single member of that team. The spatial distributions of the soldiers creates opportunities for spatial reuse by certain subsets of the teams, and our experiment is set up to evaluate whether the deep Q-learning algorithm can discover and take advantage of these opportunities. The results show that deep Q-learning is able to take advantage of spatial reuse and that doing so results in better performance than a fair-share, disjoint spectrum allocation among the teams.more » « less
-
Wong, Tan F.; Ward, Tyler; Shea, J. M.; Menendez, M.; Green, D.; Bowyer, C. (, Proceedings of the Government Microcircuit Applications and Critical Technology Conference (GOMACTech))null (Ed.)
An official website of the United States government

Full Text Available