skip to main content


Search for: All records

Award ID contains: 1738378

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to necessitate perpetual coevolution between the nuclear and mitochondrial genomes to maintain coadaptation, but the presence of two genomes also creates the opportunity for intracellular conflict. In the collection of papers that constitute this symposium volume, scientists working in diverse organismal systems spanning vast biological scales address emerging topics in integrative, comparative biology in light of mitonuclear interactions.

     
    more » « less
  2. null (Ed.)
  3. Abstract Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell. The papers included in this special issue emerged from a symposium titled “Inside the Black Box: The Mitochondrial Basis of Life-history Variation and Animal Performance.” Based on studies of diverse animal taxa, three distinct themes emerged from these papers. (1) When linking mitochondrial function to components of fitness, it is crucial that mitochondrial assays are performed in conditions as close as the intracellular conditions experienced by the mitochondria in vivo. (2) Functional plasticity allows mitochondria to retain their performance, as well as that of their host, over a range of exogenous conditions, and selection on mitochondrial and nuclear-derived proteins can optimize the match between the environment and the bioenergetic capacity of the mitochondrion. Finally, (3) studies of wild and wild-derived animals suggest that mitochondria play a central role in animal performance and life history strategy. Taken as a whole, we hope that these papers will foster discussion and inspire new hypotheses and innovations that will further our understanding of the mitochondrial processes that underlie variation in life history traits and animal performance. 
    more » « less