skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1738541

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An increasingly-popular treatment for ablation of cancerous and non-cancerous masses is thermal ablation by radiofrequency joule heating. Real-time monitoring of the thermal tissue ablation process is essential in order to maintain the reliability of the treatment technique. Common methods for monitoring the extent of ablation have proven to be accurate, though they are time-consuming and often require powerful computers to run on, which makes the clinical ablation process more cumbersome and expensive due to the time-dependent nature of the clinical procedure. In this study, a Machine Learning (ML) approach is presented to reduce the time to calculate the progress of ablation while keeping the accuracy of the conventional methods. Different setups were used to perform the ablation and collect impedance data at the same time and different ML algorithms were tested to predict the ablation depth in three dimensions, based on the collected data. In the end, it is shown that an optimal pair of hardware setup and ML algorithm were able to control the ablation by estimating the lesion depth within an average of micrometer-magnitude error range while keeping the estimation time within 5.5 s on conventional x86-64 computing hardware. 
    more » « less