Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            While Volatile Organic Compounds (VOC) and ammonia have a place in our daily lives, their leakage into the environment is harmful to human health. In order to prevent and detect gaseous leaks of harmful VOCs, a cyber-physical system (CPS) comprised of ordinary people or first responders is proposed. This CPS uses small, low-cost sensors coupled to smart phones or mobile devices with the necessary computation and communication capabilities. The efficacy of such a CPS hinges on its ability to address technical challenges stemming from the fact that identically produced sensors may produce different results under the same conditions due to sensor drift, noise, or resolution errors. The proposed system makes use of time-varying signals produced by sensors to detect gas leaks. Sensors sample the gas vapor level in a continuous manner and time-varying sensor data is processed using deep neural networks. One of the neural networks (NN) is an energy efficient Additive Neural Network (AddNet) which can be implemented in host devices. The second NN is the discriminator of a GAN and the third a regular convolutional NN. AddNet produces comparable VOC gas leak detection results to regular convolutional networks while reducing area requirements by two thirds.more » « less
- 
            Early detection of wildfire smoke in real-time is essentially important in forest surveillance and monitoring systems. We propose a vision-based method to detect smoke using Deep Convolutional Generative Adversarial Neural Networks (DC-GANs). Many existing supervised learning approaches using convolutional neural networks require substantial amount of labeled data. In order to have a robust representation of sequences with and without smoke, we propose a two-stage training of a DCGAN. Our training framework includes, the regular training of a DCGAN with real images and noise vectors, and training the discriminator separately using the smoke images without the generator. Before training the networks, the temporal evolution of smoke is also integrated with a motion-based transformation of images as a pre-processing step. Experimental results show that the proposed method effectively detects the smoke images with negligible false positive rates in real-time.more » « less
- 
            We present a non-Euclidean vector product for artificial neural networks. The vector product operator does not require any multiplications while providing correlation information between two vectors. Ordinary neurons require inner product of two vectors. We propose a class of neural networks with the universal approximation property over the space of Lebesgue integrable functions based on the proposed non-Euclidean vector product. In this new network, the "product" of two real numbers is defined as the sum of their absolute values, with the sign determined by the sign of the product of the numbers. This "product" is used to construct a vector product in RN . The vector product induces the l1 norm. The additive neural network successfully solves the XOR problem. Experiments on MNIST and CIFAR datasets show that the classification performance of the proposed additive neural network is comparable to the corresponding multi-layer perceptron and convolutional neural networks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available