skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1739966

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. STMC is a statistical model checker that uses antithetic and stratified sampling techniques to reduce the number of samples and, hence, the amount of time required before making a decision. The tool is capable of statistically verifying any black-box probabilistic system that PRISM can simulate, against probabilistic bounds on any property that PRISM can evaluate over individual executions of the system. We have evaluated our tool on many examples and compared it with both symbolic and statistical algorithms. When the number of strata is large, our algorithms reduced the number of samples more than 3 times on average. Furthermore, being a statistical model checker makes STMC able to verify models that are well beyond the reach of current symbolic model checkers. On large systems (up to 1014 states) STMC was able to check 100% of benchmark systems, compared to existing symbolic methods in PRISM, which only succeeded on 13% of systems. The tool, installation instructions, benchmarks, and scripts for running the benchmarks are all available online as open source. 
    more » « less
  2. In this paper, we investigate how symmetry transformations of equivariant dynamical systems can reduce the computation effort for safety verification. Symmetry transformations of equivariant systems map solutions to other solutions. We build upon this result, producing reachsets from other previously computed reachsets. We augment the standard simulation-based verification algorithm with a new procedure that attempts to verify the safety of the system starting from a new initial set of states by transforming previously computed reachsets. This new algorithm required the creation of a new cache-tree data structure for multi-resolution reachtubes. Our implementation has been tested on several benchmarks and has achieved significant improvements in verification time. 
    more » « less
  3. We study the problem of load-balancing in path selection in anonymous networks such as Tor. We first find that the current Tor path selection strategy can create significant imbalances. We then develop a (locally) optimal algorithm for selecting paths and show, using flow-level simulation, that it results in much better balancing of load across the network. Our initial algorithm uses the complete state of the network, which is impractical in a distributed setting and can compromise users' privacy. We therefore develop a revised algorithm that relies on a periodic, differentially private summary of the network state to approximate the optimal assignment. Our simulations show that the revised algorithm significantly outpe forms the current strategy while maintaining provable privacy guarantees. 
    more » « less