skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Award ID contains: 1740111

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Oxynitride perovskites of the type ABO 2 N have attracted considerable attention thanks to their potential ferroelectric behavior and tunable bandgap energy, making them ideal candidates for photocatalysis processes. Therefore, in order to shed light on the origin of their ferroelectric response, here we report a complete analysis of the structural and vibrational properties of SrNbO 2 N and SrTaO 2 N oxynitrides. By employing first-principles calculations, we analyzed the symmetry in-equivalent structures considering the experimentally reported parent I 4/ mcm space group (with a phase a 0 a 0 c − in Glazer's notation). Based on the I 4/ mcm reference within the 20-atoms unit-cell, we found and studied the ensemble of structures where different octahedral anionic orderings are allowed by symmetry. Thus, by exploring the vibrational landscape of the cis - and trans -type configuration structures and supported by the ionic eigendisplacements and the Born effective charges, we explained the mechanism responsible for the appearance of stable ferroelectric phases in both anionic orderings. The latter goes from covalent-driven in the trans -type ordering to the geometrically-driven in the cis -type configuration. Finally, we found in both cases that the biaxial xy epitaxial strain considerably enhances such ferroelectric response. 
    more » « less
  7. null (Ed.)