skip to main content


Search for: All records

Award ID contains: 1741390

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fusion learning methods, developed for the purpose of analyzing datasets from many different sources, have become a popular research topic in recent years. Individualized inference approaches through fusion learning extend fusion learning approaches to individualized inference problems over a heterogeneous population, where similar individuals are fused together to enhance the inference over the target individual. Both classical fusion learning and individualized inference approaches through fusion learning are established based on weighted aggregation of individual information, but the weight used in the latter is localized to thetargetindividual. This article provides a review on two individualized inference methods through fusion learning,iFusion andiGroup, that are developed under different asymptotic settings. Both procedures guarantee optimal asymptotic theoretical performance and computational scalability.

    This article is categorized under:

    Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning

    Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods

    Statistical and Graphical Methods of Data Analysis > Nonparametric Methods

    Data: Types and Structure > Massive Data

     
    more » « less
  2. Free, publicly-accessible full text available July 3, 2024
  3. International trade research plays an important role to inform trade policy and shed light on wider economic issues. With recent advances in information technology, economic agencies distribute an enormous amount of internationally comparable trading data, providing a gold mine for empirical analysis of international trade. International trading data can be viewed as a dynamic transport network because it emphasizes the amount of goods moving across network edges. Most literature on dynamic network analysis concentrates on parametric modeling of the connectivity network that focuses on link formation or deformation rather than the transport moving across the network. We take a different non-parametric perspective from the pervasive node-and-edge-level modeling: the dynamic transport network is modeled as a time series of relational matrices; variants of the matrix factor model of Wang et al. (2019) are applied to provide a specific interpretation for the dynamic transport network. Under the model, the observed surface network is assumed to be driven by a latent dynamic transport network with lower dimensions. Our method is able to unveil the latent dynamic structure and achieves the goal of dimension reduction. We applied the proposed method to a dataset of monthly trading volumes among 24 countries (and regions) from 1982 to 2015. Our findings shed light on trading hubs, centrality, trends, and patterns of international trade and show matching change points to trading policies. The dataset also provides a fertile ground for future research on international trade.

     
    more » « less
  4. We consider the problem of matrix approximation and denoising induced by the Kronecker product decomposition. Specifically, we propose to approximate a given matrix by the sum of a few Kronecker products of matrices, which we refer to as the Kronecker product approximation (KoPA). Because the Kronecker product is an extensions of the outer product from vectors to matrices, KoPA extends the low rank matrix approximation, and includes it as a special case. Comparing with the latter, KoPA also offers a greater flexibility, since it allows the user to choose the configuration, which are the dimensions of the two smaller matrices forming the Kronecker product. On the other hand, the configuration to be used is usually unknown, and needs to be determined from the data in order to achieve the optimal balance between accuracy and parsimony. We propose to use extended information criteria to select the configuration. Under the paradigm of high dimensional analysis, we show that the proposed procedure is able to select the true configuration with probability tending to one, under suitable conditions on the signal-to-noise ratio. We demonstrate the superiority of KoPA over the low rank approximations through numerical studies, and several benchmark image examples. 
    more » « less