Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Analyzing large and complex datasets for critical decision making can benefit from a collective effort involving a team of analysts. However, insights and findings from different analysts are often incomplete, disconnected, or even conflicting. Most existing analysis tools lack proper support for examining and resolving the conflicts among the findings in order to consolidate the results of collaborative data analysis. In this paper, we present CoVA, a visual analytics system incorporating conflict detection and resolution for supporting asynchronous collaborative data analysis. By using a declarative visualization language and graph representation for managing insights and insight provenance, CoVA effectively leverages distributed revision control workflow from software engineering to automatically detect and properly resolve conflicts in collaborative analysis results. In addition, CoVA provides an effective visual interface for resolving conflicts as well as combining the analysis results. We conduct a user study to evaluate CoVA for collaborative data analysis. The results show that CoVA allows better understanding and use of the findings from different analysts.more » « less
- 
            Depending on the node ordering, an adjacency matrix can highlight distinct characteristics of a graph. Deriving a "proper" node ordering is thus a critical step in visualizing a graph as an adjacency matrix. Users often try multiple matrix reorderings using different methods until they find one that meets the analysis goal. However, this trial-and-error approach is laborious and disorganized, which is especially challenging for novices. This paper presents a technique that enables users to effortlessly find a matrix reordering they want. Specifically, we design a generative model that learns a latent space of diverse matrix reorderings of the given graph. We also construct an intuitive user interface from the learned latent space by creating a map of various matrix reorderings. We demonstrate our approach through quantitative and qualitative evaluations of the generated reorderings and learned latent spaces. The results show that our model is capable of learning a latent space of diverse matrix reorderings. Most existing research in this area generally focused on developing algorithms that can compute "better" matrix reorderings for particular circumstances. This paper introduces a fundamentally new approach to matrix visualization of a graph, where a machine learning model learns to generate diverse matrix reorderings of a graph.more » « less
- 
            Abstract Graph sampling methods have been used to reduce the size and complexity of big complex networks for graph mining and visualization. However, existing graph sampling methods often fail to preserve the connectivity and important structures of the original graph. This paper introduces a new divide and conquer approach to spectral graph sampling based on graph connectivity, called the BC Tree (i.e., decomposition of a connected graph into biconnected components) and spectral sparsification. Specifically, we present two methods, spectral vertex sampling $$BC\_SV$$ B C _ S V and spectral edge sampling $$BC\_SS$$ B C _ S S by computing effective resistance values of vertices and edges for each connected component. Furthermore, we present $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D , graph connectivity-based distributed algorithms for spectral sparsification and graph drawing respectively, aiming to further improve the runtime efficiency of spectral sparsification and graph drawing by integrating connectivity-based graph decomposition and distributed computing. Experimental results demonstrate that $$BC\_SV$$ B C _ S V and $$BC\_SS$$ B C _ S S are significantly faster than previous spectral graph sampling methods while preserving the same sampling quality. $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D obtain further significant runtime improvement over sequential approaches, and $$DBC\_GD$$ D B C _ G D further achieves significant improvements in quality metrics over sequential graph drawing layouts.more » « less
- 
            The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network’s structure. We compare the two visualization environments using three tasks—interpreting network structure, memorizing a set of nodes, and identifying the structural changes—commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.more » « less
- 
            We present P5, a web-based visualization toolkit that combines declarative visualization grammar and GPU computing for progressive data analysis and visualization. To interactively analyze and explore big data, progressive analytics and visualization methods have recently emerged. Progressive visualizations of incrementally refining results have the advantages of allowing users to steer the analysis process and make early decisions. P5 leverages declarative grammar for specifying visualization designs and exploits GPU computing to accelerate progressive data processing and rendering. The declarative specifications can be modified during progressive processing to create different visualizations for analyzing the intermediate results. To enable user interactions for progressive data analysis, P5 utilizes the GPU to automatically aggregate and index data based on declarative interaction specifications to facilitate effective interactive visualization. We demonstrate the effectiveness and usefulness of P5 through a variety of example applications and several performance benchmark tests.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
