skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1741651

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Quasi-phase-matched interactions in waveguides with quadratic nonlinearities enable highly efficient nonlinear frequency conversion. In this paper, we demonstrate the first generation of devices that combine the dispersion engineering available in nanophotonic waveguides with quasi-phase-matched nonlinear interactions available in periodically poled lithium niobate (PPLN). This combination enables quasi-static interactions of femtosecond pulses, reducing the pulse energy requirements by several orders of magnitude compared to conventional devices, from picojoules to femtojoules. We experimentally demonstrate two effects associated with second harmonic generation (SHG). First, we observe efficient quasi-phase-matched SHG with <<#comment/> 100 f J of pulse energy. Second, in the limit of strong phase-mismatch, we observe spectral broadening of both harmonics with as little as 2 pJ of pulse energy. These results lay a foundation for a new class of nonlinear devices, in which coengineering of dispersion with quasi-phase-matching enables efficient nonlinear optics at the femtojoule level. 
    more » « less