skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1741666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fulvio Parmigiani (Ed.)
    Cavity magnonics deals with the interaction of magnons — elementary excitations in magnetic materials — and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration in future quantum technologies. Much of its appeal is derived from the strong magnon–photon coupling and the easily-reached nonlinear regime in microwave cavities. The interaction of magnons with light as detected by Brillouin light scattering is enhanced in magnetic optical resonators, which can be employed to cool and heat magnons. The microwave cavity photon-mediated coupling of a magnon mode to a superconducting qubit enables measurements in the single magnon limit. 
    more » « less
  2. Integrating patterned, low-loss magnetic materials into microwave devices and circuits presents many challenges due to the specific conditions that are required to grow ferrite materials, driving the need for flip-chip and other indirect fabrication techniques. The low-loss (α = (3.98 ± 0.22) × 10−5), room-temperature ferrimagnetic coordination compound vanadium tetracyanoethylene (V[TCNE]x) is a promising new material for these applications that is potentially compatible with semiconductor processing. Here, we present the deposition, patterning, and characterization of V[TCNE]x thin films with lateral dimensions ranging from 1 μm to several millimeters. We employ electron-beam lithography and liftoff using an aluminum encapsulated poly(methyl methacrylate), poly(methyl methacrylate-methacrylic acid) copolymer bilayer [PMMA/P(MMA-MAA)] on sapphire and silicon. This process can be trivially extended to other common semiconductor substrates. Films patterned via this method maintain low-loss characteristics down to 25 μm with only a factor of 2 increase down to 5 μm. A rich structure of thickness and radially confined spin-wave modes reveals the quality of the patterned films. Further fitting, simulation, and analytic analysis provide an exchange stiffness, Aex = (2.2 ± 0.5) × 10−10erg/cm, as well as insights into the mode character and surface-spin pinning. Below a micron, the deposition is nonconformal, which leads to interesting and potentially useful changes in morphology. This work establishes the versatility of V[TCNE]x for applications requiring highly coherent magnetic excitations ranging from microwave communication to quantum information. 
    more » « less