- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Awaraddi, P (1)
-
Fishwick, P (1)
-
Fishwick, Paul (1)
-
Gonzenbach, Virgilio (1)
-
Guadagno, R (1)
-
Guadagno, Rosanna E. (1)
-
Hale, B (1)
-
Hale, Baily (1)
-
Jin, R (1)
-
Jin, Rong (1)
-
Kesden, M (1)
-
Kesden, Michael (1)
-
Kitagawa, M (1)
-
Kitagawa, Midori (1)
-
Koknar, Cenk (1)
-
Omogbehin, E (1)
-
Prakash, A (1)
-
Puddy, Haley (1)
-
Raj, A (1)
-
Raj, Aniket (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A usability study evaluated the ease with which users interacted with an author-designed modeling and simulation program called STEPP (Scaffolded Training Environment for Physics Programming). STEPP is a series of educational modules for introductory algebra-based physics classes that allow students to model the motion of an object using Finite State Machines (FSMs). STEPP was designed to teach students to decompose physical systems into a few key variables such as time, position, and velocity and then encourages them to use these variables to define states (such as running a marathon) and transitions between these states (such as crossing the finish line). We report the results of a usability study on high school physics teachers that was part of a summer training institute. To examine this, 8 high school physics teachers (6 women, 2 men) were taught how to use our simulation software. Data from qualitative and quantitative measures revealed that our tool generally exceeded teacher’s expectations across questions assessing: (1) User Experience, (2) STEM-C Relevance, and (3) Classroom Applicability. Implications of this research for STEM education and the use of modeling and simulation to enhance sustainability in learning will be discussed.more » « less
-
Kitagawa, M; Fishwick, P; Kesden, M; Urquhart, M; Guadagno, R; Jin, R; Tran, N; Omogbehin, E; Prakash, A; Awaraddi, P; et al (, Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation)We are a year into the development of a software tool for modeling and simulation (M&S) of 1D and 2D kinematics consistent with Newton's laws of motion. Our goal has been to introduce modeling and computational thinking into learning high-school physics. There are two main contributions from an M&S perspective: (1) the use of conceptual modeling, and (2) the application of Finite State Machines (FSMs) to model physical behavior. Both of these techniques have been used by the M&S community to model high-level "soft systems" and discrete events. However, they have not been used to teach physics and represent ways in which M&S can improve physics education. We introduce the NSF-sponsored STEPP project along with its hypothesis and goals. We also describe the development of the three STEPP modules, the server architecture, the assessment plan, and the expected outcomes.more » « less
An official website of the United States government
