skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1743310

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ice‐shelf basal channels form due to concentrated submarine melting. They are present in many Antarctic ice shelves and can reduce ice‐shelf structural integrity, potentially destabilizing ice shelves by full‐depth incision. Here, we describe the viscous ice response to a basal channel—secondary flow—which acts perpendicular to the channel axis and is induced by gradients in ice thickness. We use a full‐Stokes ice‐flow model to systematically assess the transient evolution of a basal channel in the presence of melting. Secondary flow increases with channel size and reduces the rate of channel incision, such that linear extrapolation or the Shallow‐Shelf Approximation cannot project future channel evolution. For thick ice shelves (m) secondary flow potentially stabilizes the channel, but is insufficient to significantly delay breakthrough for thinner ice (m). Using synthetic data, we assess the impact of secondary flow when inferring basal‐channel melt rates from satellite observations.

     
    more » « less
  2. Abstract

    Surface meltwater accumulating on Antarctic ice shelves can drive fractures through to the ocean and potentially cause their collapse, leading to increased ice discharge from the continent. Implications of increasing surface melt for future ice shelf stability are inadequately understood. The southern Amery Ice Shelf has an extensive surface hydrological system, and we present data from satellite imagery and ICESat‐2 showing a rapid surface disruption there in winter 2019, covering ∼60 km2. We interpret this as an ice‐covered lake draining through the ice shelf, forming an ice doline with a central depression reaching 80 m depth amidst over 36 m uplift. Flexural rebound modeling suggests 0.75 km3of water was lost. We observed transient refilling of the doline the following summer with rapid incision of a narrow meltwater channel (20 m wide and 6 m deep). This study demonstrates how high‐resolution geodetic measurements can explore critical fine‐scale ice shelf processes.

     
    more » « less
  3. Abstract  
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract Surface melting on Amery Ice Shelf (AIS), East Antarctica, produces an extensive supraglacial drainage system consisting of hundreds of lakes connected by surface channels. This drainage system forms most summers on the southern portion of AIS, transporting meltwater large distances northward, toward the ice front and terminating in lakes. Here we use satellite imagery, Landsat (1, 4 and 8), MODIS multispectral and Sentinel-1 synthetic aperture radar to examine the seasonal and interannual evolution of the drainage system over nearly five decades (1972–2019). We estimate seasonal meltwater input to one lake by integrating output from the regional climate model [Regional Atmospheric Climate Model (RACMO 2.3p2)] over its catchment defined using the Reference Elevation Model of Antarctica. We find only weak positive relationships between modeled seasonal meltwater input and lake area and between meltwater input and lake volume. Consecutive years of extensive melting lead to year-on-year expansion of the drainage system, potentially through a link between melt production, refreezing in firn and the maximum extent of the lakes at the downstream termini of drainage. These mechanisms are important when evaluating the potential of drainage systems to grow in response to increased melting, delivering meltwater to areas of ice shelves vulnerable to hydrofracture. 
    more » « less
  6. null (Ed.)
  7. Abstract The stress balance within an ice shelf is key to the resistance, or buttressing, it can provide and in part controls the rate of ice discharge from the upstream ice sheet. Unconfined ice shelves are widely assumed to provide no buttressing. However, theory and laboratory-scale analogue experiments have shown that unconfined, floating viscous flows generate buttressing via hoop stresses. Hoop stress results from the viscous resistance to spreading perpendicular to the flow direction in a diverging flow. We build on theoretical work to explore the controls on the magnitude of hoop-stress buttressing, deducing that buttressing increases with increasing effective viscosity and increasing divergence. We use an idealised model calibrated to unconfined sections of Antarctic ice shelves and find that many shelves have low effective viscosity, most likely due to extensive damage resulting from high extensional stresses. Therefore, they are unable to sustain the large hoop stresses required to resist flow. Some ice shelves that are surrounded by sea ice year-round have a greater effective viscosity and can provide buttressing, suggesting that sea ice reduces fracturing. However, we find that most unconfined ice shelves provide insignificant buttressing today, even when hoop stresses are considered in the stress balance. 
    more » « less