skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1744269

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reconnection in the magnetotail occurs along so‐called X‐lines, where magnetic field lines tear and detach from plasma on microscopic spatial scales (comparable to particle gyroradii). In 2017–2020, the Magnetospheric MultiScale (MMS) mission detected X‐lines in the magnetotail enabling their investigation on local scales. However, the global structure and evolution of these X‐lines, critical for understanding their formation and total energy conversion mechanisms, remained virtually unknown because of the intrinsically local nature of observations and the extreme sparsity of concurrent data. Here, we show that mining a multi‐mission archive of space magnetometer data collected over the last 26 yr and then fitting a magnetic field representation modeled using flexible basis‐functions faithfully reconstructs the global pattern of X‐lines; 24 of the 26 modeled X‐lines match (Bz = 0 isocontours are within ∼2 Earth radii orRE) or nearly match (Bz = 2 nT isocontours are within ∼2RE) the locations of the MMS encountered reconnection sites. The obtained global reconnection picture is considered in the context of substorm activity, including conventional substorms and more complex events.

    more » « less
  2. Abstract

    Statistical and case studies, as well as data‐mining reconstructions suggest that the magnetotail current in the substorm growth phase has a multiscale structure with a thin ion‐scale current sheet embedded into a much thicker sheet. This multiscale structure may be critically important for the tail stability and onset conditions for magnetospheric substorms. The observed thin current sheets are found to be too long to be explained by the models with isotropic plasmas. At the same time, plasma observations reveal only weak field‐aligned anisotropy of the ion species, whereas the anisotropic electron contribution is insufficient to explain the force balance discrepancy. Here we elaborate a self‐consistent equilibrium theory of multiscale current sheets, which differs from conventional isotropic models by weak ion anisotropy outside the sheet and agyrotropy caused by quasi‐adiabatic ion orbits inside the sheet. It is shown that, in spite of weak anisotropy, the current density perturbation may be quite strong and localized on the scale of the figure‐of‐eight ion orbits. The magnetic field, current and plasma density in the limit of weak field‐aligned ion anisotropy and strong current sheet embedding, when the ion scale thin current sheet is nested in a much thicker Harris‐like current sheet, are investigated and presented in an analytical form making it possible to describe the multiscale equilibrium in sharply stretched 2D magnetic field configurations and to use it in kinetic simulations and stability analysis.

    more » « less
  3. Abstract

    Mining of substorm magnetic field data reveals the formation of two X‐lines preceded by the flux accumulation at the tailward end of a thin current sheet (TCS). Three‐dimensional particle‐in‐cell simulations guided by these pre‐onset reconnection features are performed, taking also into account weak external driving, negative charging of TCS and domination of electrons as current carriers. Simulations reveal an interesting multiscale picture. On the global scale, they show the formation of two X‐lines, with stronger magnetic field variations and inhomogeneous electric fields found closer to Earth. The X‐line appearance is preceded by the formation of two diverging electron outflow regions embedded into a single diverging ion outflow pattern and transforming into faster electron‐scale reconnection jets after the onset. Distributions of the agyrotropy parameters suggest that reconnection is provided by ion and then electron demagnetization. The bulk flow and agyrotropy distributions are consistent with MMS observations.

    more » « less
  4. Abstract

    Substorm‐type evolution of the Earth's magnetosphere is investigated by mining more than two decades (1995–2017) of spaceborne magnetometer data from multiple missions including the first two years (2016‐2017) of the Magnetospheric MultiScale mission. This investigation reveals interesting features of plasma evolution distinct from ideal magnetohydrodynamics (MHD) behavior: X‐lines, thin current sheets, and regions with the tailward gradient of the equatorial magnetic fieldBz. X‐lines are found to form mainly beyond 20RE, but for strong driving, with the solar wind electric field exceeding ∼5mV/m, they may come closer. For substorms with weaker driving, X‐lines may be preceded by redistribution of the magnetic flux in the tailwardBzgradient regions, similar to the magnetic flux release instability discovered earlier in PIC and MHD simulations as a precursor mechanism of the reconnection onset. Current sheets in the growth phase may be as thin as 0.2RE, comparable to the thermal ions gyroradius, and at the same time, as long as 15RE. Such an aspect ratio is inconsistent with the isotropic force balance for observed magnetic field configurations. These findings can help resolve kinetic mechanisms of substorm dipolarizations and adjust kinetic generalizations of global MHD models of the magnetosphere. They can also guide and complement microscale analysis of nonideal effects.

    more » « less
  5. Free, publicly-accessible full text available February 1, 2024
  6. Free, publicly-accessible full text available October 1, 2023
  7. null (Ed.)
    Magnetic reconnection is a fundamental process providing topological changes of the magnetic field, reconfiguration of space plasmas and release of energy in key space weather phenomena, solar flares, coronal mass ejections and magnetospheric substorms. Its multiscale nature is difficult to study in observations because of their sparsity. Here we show how the lazy learning method, known as K nearest neighbors, helps mine data in historical space magnetometer records to provide empirical reconstructions of reconnection in the Earth’s magnetotail where the energy of solar wind-magnetosphere interaction is stored and released during substorms. Data mining reveals two reconnection regions (X-lines) with different properties. In the mid tail ( ∼ 30 R E from Earth, where R E is the Earth’s radius) reconnection is steady, whereas closer to Earth ( ∼ 20 R E ) it is transient. It is found that a similar combination of the steady and transient reconnection processes can be reproduced in kinetic particle-in-cell simulations of the magnetotail current sheet. 
    more » « less