skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1744273

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Micrometer‐sized VO2‐based devices with integrated resistive heaters of different configurations are fabricated. Quality of the VO2films is confirmed by measuring the characteristic drop in transmittance and negative differential emissivity for these films. A two‐interface model for optical transmittance, reflectance, and absorbance is presented. This method and analytic model presents an advantage over most typically used approaches in that it does not require direct measurements of the material's optical constants to estimate transmittance. By combining the substrate and the VO2film into one layer with a reduced optical admittance, the two‐interface model is reduced to a single‐layer model. Moreover, the present work demonstrates the implementation of the developed VO2‐based devices in adaptive camouflage and shape‐converting applications. Electrical pulses are used to program different emissivity states to convert geometric shapes inside a fully integrated VO2‐based electro‐optical window. This results in the reconfiguring of thermal images to either create new shapes, or shift from one to another. 
    more » « less