skip to main content


Search for: All records

Award ID contains: 1744719

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We describe a new automatic seepage meter for use in soft bottom streams and lakes. The meter utilizes a thin‐walled tube that is inserted into the streambed or lakebed. A hole in the side of the tube is fitted with an electric valve. Prior to the test, the valve is open and the water level inside the tube is the same as the water level outside the tube. The test starts with closure of the valve, and the water level inside the tube changes as it moves toward the equilibrium hydraulic head that exists at the bottom of the tube. The time rate of change of the water level immediately after the valve closes is a direct measure of the seepage rate (q). The meter utilizes a precision linear actuator and a conductance circuit to sense the water level to a precision of about ±0.1 mm. The meter can also provide an estimate of vertical hydraulic conductivity (Kv) if data are collected for a characteristic time. The detection limit forqdepends on the vertical hydraulic head gradient. ForKv = 1 m/day,qof about 2 mm/day can be measured. Results from a laboratory sand tank show excellent agreement between measured and trueq, and results from a field site are similar to values from calculations based on independent measurements ofKvand vertical head gradients. The meter can provide rapid (30 min)qmeasurements for both gaining and losing systems and complements other methods for quantifying surface water groundwater interactions.

     
    more » « less
  2. null (Ed.)
  3. Groundwater discharge though streambeds is often focused toward discrete zones, indicating that preliminary reconnaissance may be useful for capturing the full spectrum of groundwater discharge rates using point-scale quantitative methods. However, many direct-contact reconnaissance techniques can be time-consuming, and remote sensing (e.g., thermal infrared) typically does not penetrate the water column to locate submerged seepages. In this study, we tested whether dozens of groundwater discharge measurements made at “uninformed” (i.e., selected without knowledge on high-resolution temperature variations at the streambed) point locations along a reach would yield significantly different Darcy-based groundwater discharge rates when compared with “informed” measurements, focused at streambed thermal anomalies that were identified a priori using fiber-optic distributed temperature sensing (FO-DTS). A non-parametric U-test showed a significant difference between median discharge rates for uninformed (0.05 m·day−1; n = 30) and informed (0.17 m·day−1; n = 20) measurement locations. Mean values followed a similar pattern (0.12 versus 0.27 m·day−1), and frequency distributions for uninformed and informed measurements were also significantly different based on a Kolmogorov–Smirnov test. Results suggest that even using a quick “snapshot-in-time” field analysis of FO-DTS data can be useful in streambeds with groundwater discharge rates <0.2 m·day−1, a lower threshold than proposed in a previous study. Collectively, study results highlight that FO-DTS is a powerful technique for identifying higher-discharge zones in streambeds, but the pros and cons of informed and uninformed sampling depend in part on groundwater/surface water exchange study goals. For example, studies focused on measuring representative groundwater and solute fluxes may be biased if high-discharge locations are preferentially sampled. However, identification of high-discharge locations may complement more randomized sampling plans and lead to improvements in interpolating streambed fluxes and upscaling point measurements to the stream reach scale. 
    more » « less