skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1744861

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sudden changes in energy input from the magnetosphere during geomagnetic storms could drive extreme variability in the ionosphere‐thermosphere system, which in turn affect satellite operations and other modern infrastructure. Joule heating is the main form of magnetospheric energy dissipation in the ionosphere‐thermosphere system, so it is important to know when and where Joule heating will occur. While Joule heating occurs all the time, it can increase rapidly during geomagnetic storms. We investigated the Joule heating profile of the 2013 St Patrick's day storm using the University of Michigan Global Ionosphere‐Thermosphere Model (GITM). Using empirical and data‐assimilated drivers we analyzed when and where intense Joule heating occurred. The timing, location, and sources of interhemispheric asymmetry during this geomagnetic storm are of key interest due to near equinox conditions. Hemispheric comparisons are made between parameters, including solar insolation, total electron content profiles, and Pedersen and Hall conductance profiles, obtained from GITM driven with empirical driven input, versus those driven with data‐assimilated patterns. Further comparisons are made during periods of peak hemispheric Joule heating asymmetry in an effort to investigate their potential sources. Additionally, we compare the consistency of the interhemispheric asymmetry between empirical‐ and data‐assimilated driven simulations to further analyze the role of data‐assimilated drivers on the IT system. 
    more » « less
  2. Abstract Foreshock transient (FT) events are frequently observed phenomena that are generated by discontinuities in the solar wind. These transient events are known to trigger global‐scale magnetic field perturbations (e.g., ULF waves). We report a series of FT events observed by the Magnetospheric Multiscale mission in the upstream bow shock region under quiet solar wind conditions. During the event, ground magnetometers observed significant Pc1 wave activity as well as magnetic impulse events in both hemispheres. Ground Pc1 wave observations show ∼8 min time delay (with some time differences) from each FT event which is observed at the bow shock. We also find that the ground Pc1 waves are observed earlier in the northern hemisphere compared to the southern hemisphere. The observation time difference between the hemispheres implies that the source region of the wave is the off‐equatorial region. 
    more » « less
  3. It has been shown that a proxy determination of the magnetospheric open–closed magnetic field line boundary (OCB) location can be made by examining the ultra-low-frequency (ULF) wave power in magnetometer data, with particular interest in the Pc5 ULF waves with periods of 3–10 min. In this study, we present a climatology of such Pc5 ULF waves using ground-based magnetometer data from the South Pole Station (SPA), McMurdo (MCM) station, and the Automatic Geophysical Observatories (AGOs) located across the Antarctic continent, to infer OCB behavior and variability during geomagnetically quiet times (i.e., Ap < 30 nT). For each season [i.e., austral fall (20 February 2017–20 April 2017), austral winter (20 May 2017–20 July 2017), austral spring (20 August 2017–20 October 2017), and austral summer (20 November 2017–20 January 2018)], north–south (i.e., H-component) magnetic field line residual power–spectral density (PSD) measurements taken during geomagnetically quiet periods within a 60-day window centered at the austral solstice/equinox are averaged in 10-min temporal bins to form the climatology at each station. These residual PSDs thus enable the analysis of Pc5 activity (and lower period “long-band” oscillations) and, thus, OCB location/variability as a function of season and magnetic latitude. The dawn and dusk transitions across the OCB are analyzed, with a discussion of dawn and dusk variability during nominally quiet geomagnetic periods. In addition, latitudinal dependencies of the OCB and peak Pc5 periods at each station are discussed, along with the empirical Tsyganenko model comparisons to our site measurements. 
    more » « less