skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1745043

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spatial variability in bed topography, characterized as bed roughness, impacts ice-sheet flow and organization and can be used to infer subglacial conditions and processes, yet is difficult to quantify due to sparse observations. Paleo-subglacial beds of formerly expanded glaciers found across the Antarctic continental shelf are well preserved, have relatively limited post-glacial sediment cover and contain glacial landforms that can be resolved at sub-meter vertical scales. We analyze high-resolution bathymetry offshore of Pine Island and Thwaites glaciers in the Amundsen Sea to explore spatial variability of bed roughness where streamlined subglacial landforms allow for the determination of ice-flow direction. We quantify bed roughness using std dev. and Fast Fourier Transform methods, each employed at local (100km) and regional (101–2km) scales and in along- and across-flow orientations to determine roughness expressions across spatial scales. We find that the magnitude of roughness is impacted by the parameters selected – which are often not sufficiently reported in studies – to quantify roughness. Important spatial patterns can be discerned from high-resolution bathymetry, highlighting both its usefulness in identifying patterns of streaming ice flow and underscores the need for a standardized way of characterizing topographic variability. 
    more » « less
  2. Abstract Increasing ice flux from glaciers retreating over deepening (retrograde) bed topography has been implicated in the recent acceleration of mass loss from the Greenland and Antarctic ice sheets. We show in observations that some glaciers have remained at peaks in bed topography without retreating despite enduring significant changes in climate. Observations also indicate that some glaciers which persist at bed peaks undergo sudden retreat years or decades after the onset of local ocean or atmospheric warming. Using model simulations, we show that persistence of a glacier at a bed peak is caused by ice slowing as it flows up a reverse-sloping bed to the peak. Persistence at bed peaks may lead to two very different future behaviors for a glacier: one where it persists at a bed peak indefinitely, and another where it retreats from the bed peak after potentially long delays following climate forcing. However, it is nearly impossible to distinguish which of these two future behaviors will occur from current observations. We conclude that inferring glacier stability from observations of persistence obscures our true commitment to future sea-level rise under climate change. We recommend that further research is needed on seemingly stable glaciers to determine their likely future. 
    more » « less
  3. Abstract Realistic characterization of subglacial hydrology necessitates knowledge of the range in form, scale, and spatiotemporal evolution of drainage networks. A relict subglacial meltwater corridor on the deglaciated Antarctic continental shelf encompasses 80 convergent and divergent channels, many of which are hundreds of meters wide and several of which lack a definable headwater source. Without significant surface‐melt contributions to the bed like similarly described landforms in the Northern Hemisphere, channelized drainage capacity varies non‐systematically by three orders of magnitude downstream. This signifies apparent additions and losses of basal water to the bed‐channelized system that relates to bed topography. Larger magnitude grounding‐line retreat events occurred while the channel system was active than once channelized drainage had ceased. Overall, this corridor demonstrates that meltwater drainage styles co‐exist in time and space in response to bed topography, with prolonged impacts on grounding‐line behavior. 
    more » « less