skip to main content


Search for: All records

Award ID contains: 1745074

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the occurrence of repeating glacial seismicity near the grounding line of the Foundation Ice Stream and further upstream using continuous broadband seismic data collected by Polar Earth Observing Network (POLENET/A‐NET) stations from 2014 through 2019. Through manual identification and cross‐correlation analysis, 2,237 discrete icequakes (1.5  ML  2.6) are detected in two spatial clusters, one located at the grounding line of the Foundation Ice Stream (2,219 event detections) and a second located further upstream proximal to a subglacial ridge (18 event detections). Seismicity is predominantly concentrated in the Schmidt Hills, located adjacent to the grounding line of the Foundation Ice Stream, and shows clear ocean tide modulation. Seismic events primarily occur during spring tides, and, on a shorter timescale, concurrent with the rising tide preceding daily maximum high tide. The seismicity can be attributed to stick‐slip motion and fracturing that preferentially occur during rising tides. Seismicity located further upstream in the southern portion of the Foundation Ice Stream most likely reflects basal stick‐slip processes associated with the subglacial topographic high.

     
    more » « less
  2. SUMMARY

    Mass loss from polar ice sheets is becoming the dominant contributor to current sea level changes, as well as one of the largest sources of uncertainty in sea level projections. The spatial pattern of sea level change is sensitive to the geometry of ice sheet mass changes, and local sea level changes can deviate from the global mean sea level change due to gravitational, Earth rotational and deformational (GRD) effects. The pattern of GRD sea level change associated with the melting of an ice sheet is often considered to remain relatively constant in time outside the vicinity of the ice sheet. For example, in the sea level projections from the most recent IPCC sixth assessment report (AR6), the geometry of ice sheet mass loss was treated as constant during the 21st century. However, ice sheet simulations predict that the geometry of ice mass changes across a given ice sheet and the relative mass loss from each ice sheet will vary during the coming century, producing patters of global sea level changes that are spatiotemporally variable. We adopt a sea level model that includes GRD effects and shoreline migration to calculate time-varying sea level patterns associated with projections of the Greenland and Antarctic Ice Sheets during the coming century. We find that in some cases, sea level changes can be substantially amplified above the global mean early in the century, with this amplification diminishing by 2100. We explain these differences by calculating the contributions of Earth rotation as well as gravitational and deformational effects to the projected sea level changes separately. We find in one case, for example, that ice gain on the Antarctic Peninsula can cause an amplification of up to 2.9 times the global mean sea level equivalent along South American coastlines due to positive interference of GRD effects. To explore the uncertainty introduced by differences in predicted ice mass geometry, we predict the sea level changes following end-member mass loss scenarios for various regions of the Antarctic Ice Sheet from the ISMIP6 model ensemblely, and find that sea level amplification above the global mean sea level equivalent differ by up to 1.9 times between different ice mass projections along global coastlines outside of Greenland and Antarctica. This work suggests that assessments of future sea level hazard should consider not only the integrated mass changes of ice sheets, but also temporal variations in the geometry of the ice mass changes across the ice sheets. As well, this study highlights the importance of constraining the relative timing of ice mass changes between the Greenland and Antarctic Ice Sheets.

     
    more » « less
  3. Abstract

    Seismic tomography models indicate highly variable Earth structure beneath Antarctica with anomalously low shallow mantle viscosities below West Antarctica. An improved projection of the contribution of the Antarctic Ice Sheet to sea‐level change requires consideration of this complexity to precisely account for water expelled into the ocean from uplifting marine sectors. Here we build a high‐resolution 3‐D viscoelastic structure model based on recent inferences of seismic velocity heterogeneity below the continent. The model serves as input to a global‐scale sea‐level model that we use to investigate the influence of solid Earth deformation in Antarctica on future global mean sea‐level (GMSL) rise. Our calculations are based on a suite of ice mass projections generated with a range of climate forcings and suggest that water expulsion from the rebounding marine basins contributes 4%–16% and 7%–14% to the projected GMSL change at 2100 and 2500, respectively.

     
    more » « less
  4. SUMMARY

    Earth structure beneath the Antarctic exerts an important control on the evolution of the ice sheet. A range of geological and geophysical data sets indicate that this structure is complex, with the western sector characterized by a lithosphere of thickness ∼50–100 km and viscosities within the upper mantle that vary by 2–3 orders of magnitude. Recent analyses of uplift rates estimated using Global Navigation Satellite System (GNSS) observations have inferred 1-D viscosity profiles below West Antarctica discretized into a small set of layers within the upper mantle using forward modelling of glacial isostatic adjustment (GIA). It remains unclear, however, what these 1-D viscosity models represent in an area with complex 3-D mantle structure, and over what geographic length-scale they are applicable. Here, we explore this issue by repeating the same modelling procedure but applied to synthetic uplift rates computed using a realistic model of 3-D viscoelastic Earth structure inferred from seismic tomographic imaging of the region, a finite volume treatment of GIA that captures this complexity, and a loading history of Antarctic ice mass changes inferred over the period 1992–2017. We find differences of up to an order of magnitude between the best-fitting 1-D inferences and regionally averaged depth profiles through the 3-D viscosity field used to generate the synthetics. Additional calculations suggest that this level of disagreement is not systematically improved if one increases the number of observation sites adopted in the analysis. Moreover, the 1-D models inferred from such a procedure are non-unique, that is a broad range of viscosity profiles fit the synthetic uplift rates equally well as a consequence, in part, of correlations between the viscosity values within each layer. While the uplift rate at each GNSS site is sensitive to a unique subspace of the complex, 3-D viscosity field, additional analyses based on rates from subsets of proximal sites showed no consistent improvement in the level of bias in the 1-D inference. We also conclude that the broad, regional-scale uplift field generated with the 3-D model is poorly represented by a prediction based on the best-fitting 1-D Earth model. Future work analysing GNSS data should be extended to include horizontal rates and move towards inversions for 3-D structure that reflect the intrinsic 3-D resolving power of the data.

     
    more » « less
  5. Abstract

    We examine upper mantle anisotropy across the Antarctic continent using 102 new shear wave splitting measurements obtained from teleseismic SKS, SKKS, and PKS phases combined with 107 previously published results. For the new measurements, an eigenvalue technique is used to estimate the fast polarization direction and delay time for each phase arrival, and high‐quality measurements are stacked to determine the best‐fit splitting parameters at each seismic station. The ensemble of splitting measurements shows largely NE‐SW‐oriented fast polarization directions across Antarctica, with a broadly clockwise rotation in polarization directions evident moving from west to east across the continent. Although the first‐order pattern of NE‐SW‐oriented polarization directions is suggestive of a single plate‐wide source of anisotropy, we argue the observed pattern of anisotropy more likely arises from regionally variable contributions of both lithospheric and sub‐lithospheric mantle sources. Anisotropy observed in the interior of East Antarctica, a region underlain by thick lithosphere, can be attributed to relict fabrics associated with Precambrian tectonism. In contrast, anisotropy observed in coastal East Antarctica, the Transantarctic Mountains (TAM), and across much of West Antarctica likely reflects both lithospheric and sub‐lithospheric mantle fabrics. While sub‐lithospheric mantle fabrics are best associated with either plate motion‐induced asthenospheric flow or small‐scale convection, lithospheric mantle fabrics in coastal East Antarctica, the TAM, and West Antarctica generally reflect Jurassic—Cenozoic tectonic activity.

     
    more » « less
  6. Abstract

    The geothermal heat flux (GHF) is an important boundary condition for modeling the movement of the Antarctic ice sheet but is difficult to measure systematically at a continental scale. Earlier GHF maps suffer from low resolution and possibly biased assumptions in tectonism and crustal heat generation, resulting in significant uncertainty. We present a new GHF map for Antarctica constructed by empirically relating the upper mantle structure to known GHF in the continental United States. The new map, compared with previously seismologically determined one, has improved resolution and lower uncertainties. New features in this map include high GHF in the southern Transantarctic Mountains where warmer uppermost mantle is introduced by lithospheric removal and in the Thwaites Glacier region. Additionally, a modest GHF in the central West Antarctic Rift system near the Siple Coast and an absence of large‐scale regions with GHF greater than 90 mW/m2are found.

     
    more » « less
  7. Abstract

    We have located 117 previously undetected seismic events mainly occurring between 2015 and 2017 that originated from glacial, tectonic, and volcanic processes in central West Antarctica using data recorded on Polar Earth Observing Network (POLENET/ANET) and UK Antarctic Network (UKANET) seismic stations. The seismic events, with local magnitudes (ML) ranging from 1.1 to 3.5, are predominantly clustered in four geographic regions; the Ellsworth Mountains, Thwaites Glacier, Pine Island Glacier, and Mount Takahe. Eighteen of the events are in the Ellsworth Mountains and can be attributed to a mixture of glacial and tectonic processes. The largest event noted in this study was a mid‐crustal (∼19 km focal depth;ML3.5) normal mechanism earthquake beneath Thwaites Glacier. We also located 91 glacial events near the grounding zones of Thwaites Glacier and Pine Island Glacier that are predominantly associated with time periods of significant calving activity. Eight events, likely arising from volcano‐tectonic processes, occurred beneath Mount Takahe. Using Pn travel times from the seismic events, we find laterally variable uppermost mantle structure in central West Antarctica. On average, the Ellsworth Mountains are underlain by a faster mantle lid (VPn = ∼8.4 km/s) compared to the Amundsen Sea Embayment region (VPn = ∼8.1 km/s). Within the Amundsen Sea Embayment itself, we find mantle lid velocities ranging from ∼8.05 to 8.18 km/s. Laterally heterogeneous uppermost mantle structure, indicative of variable thermal and rheological structure, likely influences both geothermal heat flux and glacial isostatic adjustment spatial patterns and rates within central West Antarctica.

     
    more » « less
  8. Abstract

    The upper mantle and transition zone beneath Antarctica and the surrounding oceans are among the poorest‐imaged regions of the Earth's interior. Over the last 15 years, several large broadband regional seismic arrays have been deployed, as have new permanent seismic stations. Using data from 297 Antarctic and 26 additional seismic stations south of ~40°S, we image the seismic structure of the upper mantle and transition zone using adjoint tomography. Over the course of 20 iterations, we utilize phase observations from three‐component seismograms containingP,S, Rayleigh, and Love waves, including reflections and overtones, generated by 270 earthquakes that occurred from 2001–2003 and 2007–2016. The new continental‐scale seismic model (ANT‐20) possesses regional‐scale resolution south of 60°S. In East Antarctica, thinner continental lithosphere is found beneath areas of Dronning Maud Land and Enderby‐Kemp Land. A continuous slow wave speed anomaly extends from the Balleny Islands through the western Ross Embayment and delineates areas of Cenozoic extension and volcanism that span both oceanic and continental regions. Slow wave speed anomalies are also imaged beneath Marie Byrd Land and along the Amundsen Sea Coast, extending to the Antarctic Peninsula. These anomalies are confined to the upper 200–250 km of the mantle, except in the vicinity of Marie Byrd Land where they extend into the transition zone and possibly deeper. Finally, slow wave speeds along the Amundsen Sea Coast link to deeper anomalies offshore, suggesting a possible connection with deeper mantle processes.

     
    more » « less
  9. Abstract Antarctic firn presents an exotic seismological environment in which the behaviors of propagating waves can be significantly at odds with those in other Earth media. We present a condensed view of the nascent field of ambient noise seismology in Antarctic firn-covered media, and highlight multiple unusual and information-rich observations framed through the lens of the firn's important role as a buffer for air temperature anomalies and a complex contributor to ice mass balance. We summarize key results from several recent papers depicting novel wind-excited firn resonances and point to the plethora of ways these observations could facilitate imaging and monitoring of glacial systems at single, isolated seismometers. Finally, we propose significant instrumental and computational objectives necessary to constrain resonance excitation mechanisms and broadly apply these observations as useful monitoring tools in Antarctica. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024