skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1745670

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that recent work of Song implies that torsion‐free hyperbolic groups with Gromov boundary arerealized as fundamental groups of closed 3‐manifolds of constant negative curvature if and only if the solution to an associated spherical Plateau problem for group homology is isometric to such a 3‐manifold, and suggest some related questions. 
    more » « less
  2. In this paper, we define a window code to be the portion of a Spatially-coupled low-density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder. We consider the design of SC-LDPC codes for windowed decoding via optimization of the window code. In particular, because iterative decoding is optimal on codes with cycle-free graph representations, we ask fundamental questions about the construction and parameters of cycle-free window codes. We show that it is possible to have an SC-LDPC code with cycles and with cycle-free window codes. We consider the relationship between the distance of the window code and the distance of the SC-LDPC code. Further, we show that SC-LDPC codes with MDS window codes exist, and all such codes are asymptotically bad. This work gives insight into the tradeoffs between window code parameters and performance of the SC-LDPC code. 
    more » « less
  3. There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on R \mathbb {R} and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for ∞ \infty . We extend aspects of this theory in the setting of rational functions with poles on R ¯ = R ∪ { ∞ } \overline {\mathbb {R}} = \mathbb {R} \cup \{\infty \} , obtaining a formulation which allows multiple poles and proving an invariance with respect to R ¯ \overline {\mathbb {R}} -preserving Möbius transformations. We obtain a characterization of Stahl–Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap sets. 
    more » « less
  4. There are six orientable compact flat 3–manifolds that can occur as cusp cross-sections of hyperbolic 4–manifolds. We provide criteria for exactly when a given commensurability class of arithmetic hyperbolic 4–manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type. 
    more » « less