skip to main content


Search for: All records

Award ID contains: 1745931

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High‐speed video and electric field change data are used to describe the first 5 ms of a negative cloud‐to‐ground flash. These observations reveal an evolution in character of the luminosity and electric field change pulses as two branches of the leader separately transition from initial leader to propagating as a negative stepped leader (SL). For the first time reported, there is evidence of weak luminosity coincident with the initiating event, a weak bipolar pulse 60 μs prior to the first initial breakdown (IB) pulse. During the IB stage, the initial leader advances intermittently at intervals of 100–280 μs, in separate light bursts that are bright for a few 20‐μs frames and are time coincident with IB pulses. In the intervals between IB pulses, the initial leader is dim or invisible during the earliest 1.8 ms. Within 2 ms, the leader propagation begins transitioning to an early SL phase, in which the leader tip advances at more regular intervals of 40–80 μs during relatively dim and brief steps which are coincident with SL pulses having short duration, small amplitude, and typically unipolar waveform. These data indicate that when the entire initial leader length behind the lower end begins to remain illuminated between bursts, the propagation mode changes from IB bursts to SL steps, and the IB stage ends. The results support a hypothesis that the early initial leader development occurs in the absence of a continuously hot channel, thus the initial leader propagation is physically unlike the self‐propagating SL advance.

     
    more » « less
  2. null (Ed.)
    Abstract This study describes results from video observations of five intracloud flashes located ≤ 20 km from the camera and recorded with 6.1 µs exposure time and 6.66 µs frame intervals. Video data are supported with electric field change (E-change) and VHF measurements, with emphasis on the flash initiating event (IE) and initial breakdown (IB) stage. In four of the five flashes, the IE is accompanied by weak luminosity, ≤ 5% above background, lasting for 300–500 µs. Two of these four IEs were positive Narrow Bipolar Events (NBEs) with VHF powers of 43 and 990 W; these are the first (known) data showing visible light detected with a positive NBE. Two other IEs with weak luminosity had powers of 0.5 and 1 W, and the IE with no detected luminosity had a VHF power of 3 W. A typical IB cluster consists of several narrow pulses and one classic pulse in E-change data (along with many VHF pulses), and each example flash has 2–10 IB clusters in the first 5–50 ms. The luminosity of IB clusters was substantially greater than IE luminosity, ranging from 10 to 40% above background in four examples, while for one flash with 10 IB clusters, the luminosity range was 35–360% above background (average 190%). Luminosity durations of IB clusters were 520–1750 µs with average 1210 µs. For both IEs and IB clusters, increases in the detected luminosity were closely timed with substantial VHF emissions and decreased when VHF emissions weakened. 
    more » « less