skip to main content


Search for: All records

Award ID contains: 1748464

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Scalable substitutional doping of 2D transition metal dichalcogenides is a prerequisite to developing next‐generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, scalable growth and vanadium (V) doping of 2D WSe2at front‐end‐of‐line and back‐end‐of‐line compatible temperatures of 800 and 400 °C, respectively, is reported. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results inp‐type doping via the introduction of discrete defect levels that lie close to the valence band maxima. Thep‐type nature of the V dopants is further verified by constructed field‐effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, this study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic‐grade wafer‐scale extrinsic 2D semiconductors.

     
    more » « less
  2. Abstract

    Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next‐generation electronic, logic‐memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe2films with Re atoms via metal–organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe2is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n‐type behavior of WSe2. Transport characteristics of fabricated back‐gated field‐effect‐transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant‐level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics.

     
    more » « less
  3. In this contribution, we use heavy ion irradiation and photoluminescence (PL) spectroscopy to demonstrate that defects can be used to tailor the optical properties of two-dimensional molybdenum disulfide (MoS 2 ). Sonicated MoS 2 flakes were deposited onto Si/SiO 2 substrate and subjected to 3 MeV Au 2+ ion irradiation at room temperature to fluences ranging from 1 × 10 12 to 1 × 10 16 cm −2 . We demonstrate that irradiation-induced defects can control optical excitations in the inner core shell of MoS 2 by binding A 1s - and B 1s -excitons, and correlate the exciton peaks to the specific defects introduced with irradiation. The systematic increase of ion fluence produced different defect densities in MoS 2 , which were estimated using B/A exciton ratios and progressively increased with ion fluence. We show that up to the fluences of 1 × 10 14 cm −2 , the MoS 2 lattice remains crystalline and defect densities can be controlled, whereas at higher fluences (≥1 × 10 15 cm −2 ), the large number of introduced defects distorts the excitonic structure of the material. In addition to controlling excitons, defects were used to split bound and free trions, and we demonstrate that at higher fluences (1 × 10 15 cm −2 ), both free and bound trions can be observed in the same PL spectrum. Most importantly, the lifetimes of these states exceed trion and exciton lifetimes in pristine MoS 2 , and PL spectra of irradiated MoS 2 remains unchanged weeks after irradiation experiments. Thus, this work demonstrated the feasibility of engineering novel optical behaviors in low-dimensional materials using heavy ion irradiation. The insights gained from this study will aid in understanding the many-body interactions in low-dimensional materials and may ultimately be used to develop novel materials for optoelectronic applications. 
    more » « less