skip to main content


Search for: All records

Award ID contains: 1748945

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Global interspecific body size distributions have been suggested to be shaped by selection pressures arising from biotic and abiotic factors such as temperature, predation and parasitism. Here, we investigated the ecological and evolutionary drivers of global latitudinal size gradients in an old insect order.

    Location

    Global.

    Taxon

    Odonata (dragonflies and damselflies).

    Methods

    We compiled data on interspecific variation in extant and extinct body sizes of Odonata, using an already existing database (The Odonate Phenotypic Database) and fossil data (The Paleobiology Database). We combined such body size data with latitudinal information and data on biotic and abiotic environmental variables across the globe to investigate and quantify interspecific latitudinal size‐gradients (“Bergmann's Rule”) and their environmental determinants. We used phylogenetic comparative methods and a global published phylogeny of Odonata to address these questions.

    Results

    Phylogenetic comparative analyses revealed that global size variation of extant Odonata taxa is negatively influenced by both regional avian diversity and temperature, with larger‐bodied species in the suborder Anisoptera (dragonflies) showing a steeper size‐latitude relationship than smaller‐bodied species in the suborder Zygoptera (damselflies). Interestingly, fossil data show that the relationship between wing size and latitude has shifted: latitudinal size trends had initially negative slopes but became shallower or positive following the evolutionary emergence and radiation of birds.

    Main Conclusions

    The changing size‐latitude trends over geological and macroevolutionary time were likely driven by a combination of predation from birds and maybe pterosaurs and high dispersal ability of large dragonflies. Our study reveals that a simple version of Bergmann's Rule based on temperature alone is not sufficient to explain interspecific size‐latitude trends in Odonata. Our results instead suggest that latitudinal size gradients were shaped not only by temperature but also by avian predators, potentially driving the dispersal of large‐sized clades out of the tropics and into the temperate zone.

     
    more » « less
  2. Abstract

    Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question.

    Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency‐dependent population growth, which has a key role stabilizing local competitor coexistence.

    We conducted field experiments in three lakes manipulating relative frequencies of twoEnallagmadamselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry‐over effects between life stages to decompose the relative effect of each fitness component generating frequency‐dependent population growth.

    This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes.

    Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population‐level variation.

     
    more » « less
  3. Abstract

    Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta‐analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non‐parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically‐transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non‐parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.

     
    more » « less
  4. Abstract

    The extent and magnitude of parasitism often vary among closely related host species and across populations within species. Determining the ecological basis for this species and population‐level variation in parasitism is critical for understanding infection dynamics in multi‐host–parasite systems. To investigate such ecological underpinnings of variation in parasitism, we studiedEnallagmadamselfly host species and their water mite (Arrenurusspp.) ectoparasites in lakes.

    We first evaluated how host identity and density could shape parasitism. To test the effects of con‐ and heterospecific host density on parasitism, we used a field experiment withEnallagma basidensandE. signatum. We found that parasitism did not vary with con‐ or heterospecific density and was determined by host identity alone, with no spillover effects.

    We also evaluated the potential role of local adaptation and resource availability in shaping parasitism. To do so, we usedE. signatumin a reciprocal transplant experiment crossed with a prey resource‐level manipulation. This experiment revealed that parasitism declined sharply for one host population in its non‐local lake, but not the other source population, with no effects of prey levels. This asymmetry implies that damselflies express enhanced defences against parasitism that are neither population‐specific nor dependent on resource abundance, or that mites developed heightened local host specificity.

    The results of multivariate modeling from an observational study generally supported these experimental findings: neither host density nor resource abundance strongly explained among‐population variation in parasitism. Instead, local abiotic conditions (pH) had the strongest relationship with parasitism, with minimal associations with predator density, temperature and a measure of immune function.

    Collectively, our findings suggest a crucial role for the local environment in shaping host–parasite interactions within multi‐host–parasite systems. More generally, these results show that research at the intersection of community ecology and disease ecology is critical for understanding host–parasite dynamics within natural communities.

     
    more » « less
  5. Abstract

    The neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs.

    What demographic outcomes of the interactions within and between species in these guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, we consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest.

    We show that community drift dynamics only emerge when the density‐dependent effects of each species on itself are identical to its density‐dependent effects on every other guild member. In contrast, if each guild member directly limits itself more than it limits the abundance of other guild members, all species in the guild are coexisting, even though they all are ecologically equivalent with respect to their interactions with species outside the guild (i.e. resources, predators, mutualists). Hence, considering only interspecific ecological differences generating density dependence, and not fully accounting for the preponderance of mechanisms causing intraspecific density dependence, will provide an incomplete picture for segregating between neutrality and coexistence. We also identify critical experiments necessary to disentangle guilds of ecologically equivalent species from those experiencing ecological drift, as well as provide an overview of ways of incorporating a mechanistic basis into studies of species coexistence and neutrality.

    Identifying these characteristics, and the mechanistic basis underlying community structure, is not merely an exercise in clarifying the semantics of coexistence and neutral theories, but rather reflects key differences that must exist among community members in order to determine how and why communities are structured.

     
    more » « less
  6. Determining the effects of parasites on host reproduction is key to understanding how parasites affect the underpinnings of selection on hosts. Although infection is expected to be costly, reducing mean fitness, infection could also increase variation in fitness costs among hosts, both of which determine the potential for selection on hosts. To test these ideas, we used a phylogenetically informed meta-analysis of 118 studies to examine how changes in the mean and variance in the outcome of reproduction differed between parasitized and non-parasitized hosts. We found that parasites had severe negative effects on mean fitness, with parasitized hosts suffering reductions in fecundity, viability and mating success. Parasite infection also increased variance in reproduction, particularly fecundity and offspring viability. Surprisingly, parasites had similar effects on viability when either the male or female was parasitized. These results not only provide the first synthetic, comparative, and quantitative summary of the strong deleterious effects of parasites on host reproductive fitness, but also reveal a consistent role for parasites in shaping the opportunity for selection. 
    more » « less