skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1749427

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading global cause of death from an infectious agent. Mycobacteria thrive within their host Mϕs and presently, there is no animal model that permits combined in vitro and in vivo study of mycobacteria-host Mϕ interactions. Mycobacterium marinum (Mm), which causes TB in aquatic vertebrates, has become a promising model for TB research, owing to its close genetic relatedness to Mtb and the availability of alternative, natural host aquatic animal models. Here, we adopted the Xenopus laevis frog-Mm surrogate infection model to study host Mϕ susceptibility and resistance to mycobacteria. Mϕ differentiation is regulated though the CSF-1 receptor (CSF-1R), which is activated by CSF-1 and the unrelated IL-34 cytokines. Using combined in vitro and in vivo approaches, we demonstrated that CSF-1-Mϕs exacerbate Mm infections, are more susceptible to mycobacterial entry and are less effective at killing this pathogen. By contrast, IL-34-Mϕs confer anti-Mm resistance in vivo, are less susceptible to Mm entry and more effectively eliminate internalized mycobacteria. Moreover, we showed that the human CSF-1- and IL-34-Mϕs are likewise, respectively, susceptible and resistant to mycobacteria, and that both frog and human CSF-1-Mϕs are more prone to the spread of mycobacteria and to being infected by Mm-laden Mϕs than the respective IL-34-Mϕ subsets. This work marks the first report describing the roles of these Mϕ subsets in mycobacterial disease and may well lead to the development of more targeted anti-Mtb approaches. 
    more » « less
  2. Amphibian metamorphosis represents a dramatic example of post-embryonic development. In the anuran Xenopus laevis frog, this process involves extensive changes to larval tissues, structures, and physiology to produce its adult form. As a long-standing model to study tissue remodeling, both amphibian metamorphosis and mammalian development are under the control of thyroid hormone. Successful remodeling though, also requires precise temporospatial regulation of immune activation. Yet there is much to learn about the immune components linked to metamorphosis. In turn, granulocytes are a class of innate immune cells recently touted for their participation in processes beyond classical immune defenses, including in pathological and non-pathological tissue remodeling. In this manuscript, we explore the roles of granulocytes in perhaps the most conspicuous anuran metamorphic event: tadpole tail reabsorption. We characterize granulocyte infiltration into the tail as metamorphosis progresses. Although some granulocyte subpopulations exist in both Xenopus and mammals, our previous work has identified additional Xenopus-specific populations. Thus, here we further explored subpopulation dynamics through distinct stages of natural metamorphosis, their likely roles during this process, and their relationship with thyroid hormone. As endocrine disruptors continue to threaten species across the animal kingdom, the work described here offers much-needed insight into immune contributions to endocrine-linked development. 
    more » « less
  3. Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution. 
    more » « less
  4. Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families. 
    more » « less
  5. Macrophage (Mϕ)-lineage cells are integral to the immune defences of all vertebrates, including amphibians. Across vertebrates, Mϕdifferentiation and functionality depend on activation of the colony stimulating factor-1 (CSF1) receptor by CSF1 and interluekin-34 (IL34) cytokines. Our findings to date indicate that amphibian (Xenopus laevis) Mϕs differentiated with CSF1 and IL34 are morphologically, transcriptionally and functionally distinct. Notably, mammalian Mϕs share common progenitor population(s) with dendritic cells (DCs), which rely on fms-like tyrosine kinase 3 ligand (FLT3L) for differentiation whileX. laevisIL34-Mϕs exhibit many features attributed to mammalian DCs. Presently, we comparedX. laevisCSF1- and IL34-Mϕs with FLT3L-derivedX. laevisDCs. Our transcriptional and functional analyses indicated that indeed the frog IL34-Mϕs and FLT3L-DCs possessed many commonalities over CSF1-Mϕs, including transcriptional profiles and functional capacities. Compared toX. laevisCSF1-Mϕs, the IL34-Mϕs and FLT3L-DCs possess greater surface major histocompatibility complex (MHC) class I, but not MHC class II expression, were better at eliciting mixed leucocyte responsesin vitroand generatingin vivore-exposure immune responses againstMycobacterium marinum. Further analyses of non-mammalian myelopoiesis akin to those described here, will grant unique perspectives into the evolutionarily retained and diverged pathways of Mϕand DC functional differentiation. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less
  6. Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells. 
    more » « less
  7. Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3–cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process. 
    more » « less
  8. While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults. 
    more » « less