skip to main content


Search for: All records

Award ID contains: 1749524

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    How do children form beliefs about the infinity of space, time, and number? We asked whether children held similar beliefs about infinity across domains, and whether beliefs in infinity for domains like space and time might be scaffolded upon numerical knowledge (e.g., knowledge successors within the count list). To test these questions, 112 U.S. children (aged 4;0–7;11) completed an interview regarding their beliefs about infinite space, time, and number. We also measured their knowledge of counting, and other factors that might impact performance on linguistic assessments of infinity belief (e.g., working memory, ability to respond to hypothetical questions). We found that beliefs about infinity were very high across all three domains, suggesting that infinity beliefs may arise early in development for space, time, and number. Second, we found that—across all three domains—children were more likely to believe that it is always possible to add a unit than to believe that the domain is endless. Finally, we found that understanding the rules underlying counting predicted children’s belief that it is always possible to add 1 to any number, but did not predict any of the other elements of infinity belief.

     
    more » « less
  2. Although many U.S. children can count sets by 4 years, it is not until 5½–6 years that they understand how counting relates to number—that is, that adding 1 to a set necessitates counting up one number. This study examined two knowledge sources that 3½‐ to 6‐year‐olds (N = 136) may leverage to acquire this “successor function”: (a) mastery of productive rules governing count list generation; and (b) training with “+1” math facts. Both productive counting and “+1” math facts were related to understanding that adding 1 to sets entails counting up one number in the count list; however, even children with robust successor knowledge struggled with its arithmetic expression, suggesting they do not generalize the successor function from “+1” math facts.

     
    more » « less