skip to main content


Search for: All records

Award ID contains: 1750006

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rationale

    Mass spectrometry imaging of young seedlings is an invaluable tool in understanding how mutations affect metabolite accumulation in plant development. However, due to numerous biological considerations, established methods for the relative quantification of analytes using infrared matrix‐assisted laser desorption electrospray ionization (IR‐MALDESI) mass spectrometry imaging are not viable options. In this study, we report a method for the quantification of auxin‐related compounds using stable‐isotope‐labelled (SIL) indole‐3‐acetic acid (IAA) doped into agarose substrate.

    Methods

    Wild‐typeArabidopsis thalianaseedlings,sur2andwei8 tar2loss‐of‐function mutants, andYUC1gain‐of‐function line were grown for 3 days in the dark in standard growth medium. SIL‐IAA was doped into a 1% low‐melting‐point agarose gel and seedlings were gently laid on top for IR‐MALDESI imaging with Orbitrap mass spectrometry analysis. Relative quantification was performed post‐acquisition by normalization of auxin‐related compounds to SIL‐IAA in the agarose. Amounts of auxin‐related compounds were compared between genotypes to distinguish the effects of the mutations on the accumulation of indolic metabolites of interest.

    Results

    IAA added to agarose was found to remain stable, with repeatability and abundance features of IAA comparable with those of other compounds used in other methods for relative quantification in IR‐MALDESI analyses. Indole‐3‐acetaldoxime was increased insur2mutants compared with wild‐type and other mutants. Other auxin‐related metabolites were either below the limits of quantification or successfully quantified but showing little difference among mutants.

    Conclusions

    Agarose was shown to be an appropriate sampling surface for IR‐MALDESI mass spectrometry imaging ofArabidopsisseedlings. SIL‐IAA doping of agarose was demonstrated as a viable technique for relative quantification of metabolites in live seedlings or tissues with similar biological considerations.

     
    more » « less
  2. Abstract

    Phytohormone ethylene regulates numerous aspects of plant physiology, from fruit ripening to pathogen responses. The molecular basis of ethylene biosynthesis and action has been investigated for over 40 years, and a combination of biochemistry, genetics, cell, and molecular biology have proven successful at uncovering the core machinery of the ethylene pathway. A number of molecular tools have been developed over the years that enable visualization of the sites of ethylene production and response in the plant. Genetically encoded biosensors take advantage of reporter proteins, i.e., fluorescent, luminescent, or colorimetric markers, to highlight the tissues that make, perceive, or respond to the hormone. This review describes the different types of biosensors currently available to the ethylene community and discusses potential new strategies for developing the next generation of genetically encoded ethylene reporters.

     
    more » « less
  3. Abstract

    Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re‐envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

     
    more » « less
  4. Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses. 
    more » « less
  5. null (Ed.)