skip to main content

Search for: All records

Award ID contains: 1750116

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Over the past eleven years, the Robot Operating System (ROS), has grown from a small research project into the most popular framework for robotics development. Composed of packages released on the Rosdistro package manager, ROS aims to simplify development by providing reusable libraries, tools and conventions for building a robot. Still, developing a complete robot is a difficult task that involves bridging many technical disciplines. Experts who create computer vision packages, for instance, may need to rely on software designed by mechanical engineers to implement motor control. As building a robot requires domain expertise in software, mechanical, and electrical engineering, as well as artificial intelligence and robotics, ROS faces knowledge based barriers to collaboration. In this paper, we examine how the necessity of domain specific knowledge impacts the open source collaboration model. We create a comprehensive corpus of package metadata and dependencies over three years in the ROS ecosystem, analyze how collaboration is structured, and study the dependency network evolution. We find that the most widely used ROS packages belong to a small cluster of foundational working groups (FWGs), each organized around a different domain in robotics. We show that the FWGs are growing at a slower rate than the rest of the ecosystem, in terms of their membership and number of packages, yet the number of dependencies on FWGs is increasing at a faster rate. In addition, we mined all ROS packages on GitHub, and showed that 82% rely exclusively on functionality provided by FWGs. Finally, we investigate these highly influential groups and describe the unique model of collaboration they support in ROS. 
    more » « less
  3. null (Ed.)
    Static analysis is a proven technique for catching bugs during software development. However, analysis tooling must approximate, both theoretically and in the interest of practicality. False positives are a pervading manifestation of such approximations—tool configuration and customization is therefore crucial for usability and directing analysis behavior. To suppress false positives, developers readily disable bug checks or insert comments that suppress spurious bug reports. Existing work shows that these mechanisms fall short of developer needs and present a significant pain point for using or adopting analyses. We draw on the insight that an analysis user always has one notable ability to influence analysis behavior regardless of analyzer options and implementation: modifying their program. We present a new technique for automated, generic, and temporary code changes that tailor to suppress spurious analysis errors. We adopt a rule-based approach where simple, declarative templates describe general syntactic changes for code patterns that are known to be problematic for the analyzer. Our technique promotes program transformation as a general primitive for improving the fidelity of analysis reports (we treat any given analyzer as a black box). We evaluate using five different static analyzers supporting three different languages (C, Java, and PHP) on large, real world programs (up to 800KLOC). We show that our approach is effective in sidestepping long-standing and complex issues in analysis implementations. 
    more » « less
  4. null (Ed.)
    Plan reuse is a promising approach for enabling self-* systems to effectively adapt to unexpected changes, such as evolving existing adaptation strategies after an unexpected change using stochastic search. An ideal self-* planner should be able to reuse repertoires of adaptation strategies, but this is challenging due to the evaluation overhead. For effective reuse, a repertoire should be both (a) likely to generalize to future situations, and (b) cost effective to evaluate. In this work, we present an approach inspired by chaos engineering for generating a diverse set of adaptation strategies to reuse, and we explore two analysis approaches based on clone detection and syntactic transformation for constructing repertoires of adaptation strategies that are likely to be amenable to reuse in stochastic search self-* planners. An evaluation of the proposed approaches on a simulated system inspired by Amazon Web Services shows planning effectiveness improved by up to 20% and reveals tradeoffs in planning timeliness and optimality. 
    more » « less