skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1751455

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract At crystalline interfaces where a valence-mismatch exists, electronic, and structural interactions may occur to relieve the polar mismatch, leading to the stabilization of non-bulk-like phases. We show that spontaneous reconstructions at polar La0.7Sr0.3MnO3interfaces are correlated with suppressed ferromagnetism for film thicknesses on the order of a unit cell. We investigate the structural and magnetic properties of valence-matched La0.7Sr0.3CrO3/La0.7Sr0.3MnO3interfaces using a combination of high-resolution electron microscopy, first principles theory, synchrotron X-ray scattering and magnetic spectroscopy and temperature-dependent magnetometry. A combination of an antiferromagnetic coupling between the La0.7Sr0.3CrO3and La0.7Sr0.3MnO3layers and a suppression of interfacial polar distortions are found to result in robust long-range ferromagnetic ordering for ultrathin La0.7Sr0.3MnO3. These results underscore the critical importance of interfacial structural and magnetic interactions in the design of devices based on two-dimensional oxide magnetic systems. 
    more » « less
  2. Abstract Functional oxides are an untapped resource for futuristic devices and functionalities. These functionalities can range from high temperature superconductivity to multiferroicity and novel catalytic schemes. The most prominent route for transforming these ideas from a single device in the lab to practical technologies is by integration with semiconductors. Moreover, coupling oxides with semiconductors can herald new and unexpected functionalities that exist in neither of the individual materials. Therefore, oxide epitaxy on semiconductors provides a materials platform for novel device technologies. As oxides and semiconductors exhibit properties that are complementary to one another, epitaxial heterostructures comprised of the two are uniquely poised to deliver rich functionalities. This review discusses recent advancements in the growth of epitaxial oxides on semiconductors, and the electronic and physical structure of their interfaces. Leaning on these fundamentals and practicalities, the material behavior and functionality of semiconductor–oxide heterostructures is discussed, and their potential as device building blocks is highlighted. The culmination of this discussion is a review of recent advances in the development of prototype devices based on semiconductor–oxide heterostructures, in areas ranging from silicon photonics to photocatalysis. This overview is intended to stimulate ideas for new concepts of functional devices and lay the groundwork for their realization. 
    more » « less
  3. Revealing anisotropic nature of 2D superconductivity in the context of electronic structure, orbital character, and spin texture. 
    more » « less
  4. A facile and novel processable method to synthesize the Ni nanoparticles (Ni NPs) by tailoring their size in the matrix of the silicon oxycarbide (SiOC) ceramic system is reported. This method is based on polymer‐derived ceramics (PDCs), instead of the conventional powder route. The specific structural characteristics and magnetic properties of the various Ni NPs/SiOC composites as a function of carbon content are systematically investigated. The magnetic properties are experimentally investigated as a function of NP size and measurement temperature. It is demonstrated that the change in the size of Ni NPs (average from ≈4 to ≈ 19 nm) determines the magnetic nature of superparamagnetism. Zero‐field‐cooled (ZFC) and field‐cooled (FC) magnetization studies under magnetic fields of 100 Oe are performed. The saturatedMversusH(M–H) loops (saturation magnetization) increase and the coercivity decreases with the size reduction of Ni NPs. It is an indicator of the presence of superparamagnetic behavior and single‐domain NP for ceramic materials. 
    more » « less
  5. The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO3 (SRO) films grown on Nb-doped SrTiO3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism (t > 3 uc), the orthorhombic distortions decrease with increasing temperature above TC. Below TC, the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films. 
    more » « less