skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1751535

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To make a future run by renewable energy possible, we must design our power system to seamlessly collect, store, and transport the Earth's naturally occurring flows of energy – namely the sun and the wind. Such a future will require that accurate representations of wind and solar resources and their associated variability permeate power systems planning and operational tools. Practically speaking, we must merge weather and power systems modeling. Although many meteorological phenomena that affect wind and solar power production are well-studied in isolation, no coordinated effort has sought to improve medium- and long-term power systems planning using numerical weather prediction (NWP) models. One modern open-source NWP tool – the weather research and forecasting (WRF) model – offers the complexity and flexibility required to integrate weather prediction with a power systems model in any region. However, there are over one million distinct ways to set up WRF. Here, we present a methodology for optimizing the WRF model physics for forecasting wind power density and solar irradiance using a genetic algorithm. The top five setups created by our algorithm outperform all of the recommended setups. Using the simulation results, we train a random forest model to identify which WRF parameters contribute to the lowest forecast errors and produce plots depicting the performance of key physics options to guide energy researchers in quickly setting up an accurate WRF model. 
    more » « less
  2. The effects of volcanic eruptions on hurricane statistics are examined using two long simulations from the Community Earth System Model (CESM) Last Millennium Ensemble (LME). The first is an unforced control simulation, wherein all boundary conditions were held constant at their 850 CE values (LMEcontrol). The second is a “fully forced” simulation with time evolving radiative changes from volcanic, solar, and land use changes from 850 CE through present (LMEforced). Large tropical volcanic eruptions produce the greatest change in radiative forcing during this time period, which comprise the focus of this study. The Weather Research and Forecasting (WRF) model is used to dynamically downscale 150 control years of LMEcontrol and an additional 84 years of LMEforced for all mid-latitude volcanic eruptions between 1100 and 1850 CE. This time period was selected based on computational considerations. For each eruption, 2 years are dynamically downscaled. 23 of these volcanic eruptions are in the Northern Hemisphere and 19 are in the Southern Hemisphere. The effectiveness of the downscaling methodology is examined by applying the same downscaling approach to historical ERA-I reanalysis data and comparing the downscaled storm tracks and intensities to the International Best Track Archive for Climate Stewardship (IBTrACS) database. Hurricane statistics are then computed from both the downscaled control and downscaled forced LME simulations. Results suggest moderate effects on hurricanes from the average of all northern hemisphere eruptions, with the largest effects being from the volcanoes with the most aerosol forcing. More specifically, reductions in hurricane frequency, intensity, and lifetime following northern hemisphere eruptions are apparent. Strong evidence is also shown for correlation between eruption strength and changes in these diagnostics. The aggregate effect from both northern and southern hemisphere eruptions is minor. While reductions in frequency, intensity, and lifetime from northern hemisphere eruptions occur, the opposite effect is observed from southern hemisphere eruptions. 
    more » « less
  3. Abstract Climate models consistently project a significant drying in the Caribbean during climate change, and between 2013 and 2016 the region experienced the worst multiyear drought in the historical period. Although dynamical mechanisms have been proposed to explain drought in the Caribbean, the contributions from mass convergence and advection to precipitation minus evaporation ( P − E ) anomalies during drought are unknown. Here we analyze the dynamics of contemporaneous droughts in the Caribbean by decomposing the contributions of mass convergence and advection to P − E using observational and simulated data. We find that droughts arise from an anomalous subsidence over the southeastern Caribbean and northeastern South America. Although the contributions from mass convergence and advection vary across the region, it is mass convergence that is the main driver of drought in our study area. A similar dynamical pattern is observed in simulated droughts using the Community Earth System Model (CESM) Large Ensemble (LENS). 
    more » « less
  4. Droughts of the future are likely to be more frequent, severe, and longer lasting than they have been in recent decades, but drought risks will be lower if greenhouse gas emissions are cut aggressively. This review presents a synopsis of the tools required for understanding the statistics, physics, and dynamics of drought and its causes in a historical context. Although these tools have been applied most extensively in the United States, Europe, and the Amazon region, they have not been as widely used in other drought-prone regions throughout the rest of the world, presenting opportunities for future research. Water resource managers, early career scientists, and veteran drought researchers will likely see opportunities to improve our understanding of drought. 
    more » « less