Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PurposeIn vitroassays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization. MethodsThe goal of this study was to create a 3D spheroid model using cancer cells and macrophages, and to demonstrate a custom image analysis program to assess structural and metabolic changes across spheroid microregions. ResultsStructural characterization shows that cells at the necrotic core show high normalized fluorescence intensities of CD206 (M2 macrophages), cellular apoptosis (cleaved caspase-3, CC3), and hypoxia (HIF-1α and HIF-2α) compared to the proliferative edge, which shows high normalized fluorescence intensities of CD80 (M1 macrophages) and cellular proliferation (Ki67). Metabolic characterization was performed using multiphoton microscopy and fluorescence lifetime imaging (FLIM). Results show that the mean NADH lifetime at the necrotic core (1.011 ± 0.086 ns) was lower than that at the proliferative edge (1.105 ± 0.077 ns). The opposite trend is shown in the A1/A2 ratio (necrotic core: 4.864 ± 0.753; proliferative edge: 4.250 ± 0.432). ConclusionOverall, the results of this study show that 3D multicellular spheroid models can provide a reliable solution for studying tumor biology, allowing for the evaluation of discrete changes across all spheroid microregions.more » « less
-
Abstract BackgroundMacrophages are one of the most prevalent subsets of immune cells within the tumor microenvironment and perform a range of functions depending on the cytokines and chemokines released by surrounding cells and tissues. Recent research has revealed that macrophages can exhibit a spectrum of phenotypes, making them highly plastic due to their ability to alter their physiology in response to environmental cues. Recent advances in examining heterogeneous macrophage populations include optical metabolic imaging, such as fluorescence lifetime imaging (FLIM), and multiphoton microscopy. However, the method of detection for these systems is reliant upon the coenzymes NAD(P)H and FAD, which can be affected by factors other than cytoplasmic metabolic changes. In this study, we seek to validate these optical measures of metabolism by comparing optical results to more standard methods of evaluating cellular metabolism, such as extracellular flux assays and the presence of metabolic intermediates. MethodsHere, we used autofluorescence imaging of endogenous metabolic co-factors via multiphoton microscopy and FLIM in conjunction with oxygen consumption rate and extracellular acidification rate through Seahorse extracellular flux assays to detect changes in cellular metabolism in quiescent and classically activated macrophages in response to cytokine stimulation. ResultsBased on our Seahorse XFP flux analysis, M0 and M1 macrophages exhibit comparable trends in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Autofluorescence imaging of M0 and M1 macrophages was not only able to show acute changes in the optical redox ratio from pre-differentiation (0 hours) to 72 hours post-cytokine differentiation (M0: 0.320 to 0.258 and M1: 0.316 to 0.386), mean NADH lifetime (M0: 1.272 ns to 1.379 ns and M1: 1.265 ns to 1.206 ns), and A1/A2 ratio (M0: 3.452 to ~ 4 and M1: 3.537 to 4.529) but could also detect heterogeneity within each macrophage population. ConclusionsOverall, the findings of this study suggest that autofluorescence metabolic imaging could be a reliable technique for longitudinal tracking of immune cell metabolism during activation post-cytokine stimulation.more » « less
-
Nicotinamide adenine dinucleotide (NADH) is a cofactor that serves to shuttle electrons during metabolic processes such as glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS). NADH is autofluorescent, and its fluorescence lifetime can be used to infer metabolic dynamics in living cells. Fiber-coupled time-correlated single photon counting (TCSPC) equipped with an implantable needle probe can be used to measure NADH lifetime in vivo, enabling investigation of changing metabolic demand during muscle contraction or tissue regeneration. This study illustrates a proof of concept for point-based, minimally-invasive NADH fluorescence lifetime measurement in vivo. Volumetric muscle loss (VML) injuries were created in the left tibialis anterior (TA) muscle of male Sprague Dawley rats. NADH lifetime measurements were collected before, during, and after a 30[Formula: see text]s tetanic contraction in the injured and uninjured TA muscles, which was subsequently fit to a biexponential decay model to yield a metric of NADH utilization (cytoplasmic vs protein-bound NADH, the A[Formula: see text]/A[Formula: see text] ratio). On average, this ratio was higher during and after contraction in uninjured muscle compared to muscle at rest, suggesting higher levels of free NADH in contracting and recovering muscle, indicating increased rates of glycolysis. In injured muscle, this ratio was higher than uninjured muscle overall but decreased over time, which is consistent with current knowledge of inflammatory response to injury, suggesting tissue regeneration has occurred. These data suggest that fiber-coupled TCSPC has the potential to measure changes in NADH binding in vivo in a minimally invasive manner that requires further investigation.more » « less
-
Abstract Background Immunotherapy in colorectal cancer (CRC) regulates specific immune checkpoints and, when used in combination with chemotherapy, can improve patient prognosis. One specific immune checkpoint is the recruitment of circulating monocytes that differentiate into tumor-associated macrophages (TAMs) and promote tumor angiogenesis. Changes in vascularization can be non-invasively assessed via diffuse reflectance spectroscopy using hemoglobin concentrations and oxygenation in a localized tumor volume. In this study, we examine whether blockade of monocyte recruitment via CCL2 (macrophage chemoattractant protein-1) leads to enhanced sensitivity of 5-fluorouracil (5-FU) in a CT26-Balb/c mouse model of CRC. It was hypothesized that the blockade of TAMs will alter tumor perfusion, increasing chemotherapy response. A subcutaneous tumor model using Balb/c mice injected with CT26 colon carcinoma cells received either a saline or isotype control, anti-CCL2, 5-FU, or a combination of anti-CCL2 and 5-FU. Results Findings show that 12 days post-treatment, monocyte recruitment was significantly reduced by approximately 61% in the combination group. This shows that the addition of anti-CCL2 to 5-FU slowed the fold-change (change from the original measurement to the final measurement) in tumor volume from Day 0 to Day 12 (~ 5 fold). Modest improvements in oxygen saturation (~ 30%) were observed in the combination group. Conclusion The findings in this work suggest that the blockade of CCL2 is sufficient in the reduction of TAMs that are recruited into the tumor microenvironment and has the ability to modestly alter tumor perfusion during early-tumor response to treatment even though the overall benefit is relatively modest.more » « less
-
Significance: Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. Aim: Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. Approach: A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally—via endoscopic guidance—in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. Conclusion: Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.more » « less
-
Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading cause of cancer deaths annually in the United States. Conventional treatment options include postoperative (adjuvant) and preoperative (neoadjuvant) chemotherapy and radiotherapy. Although these treatment modalities have shown to decrease tumor burden, a major limitation to chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-modulation strategies have emerged as a promising new therapeutic avenue to reduce this recurrence rate while minimizing undesirable systemic side effects. This review will focus specifically on the mechanisms of monoclonal antibodies: immune checkpoint inhibitors and cytokines, as well as current drugs approved by the Food and Drug Administration (FDA) and new clinical/pre-clinical trials. Finally, this review will investigate emerging methods used to monitor tumor response post-treatment.more » « less
An official website of the United States government
