skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1752784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit—the field required to reach the lowest LL—of 0.8 tesla—unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs, and our result provides a way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract A variety of precise experiments have been carried out to establish the character of the superconducting state in Sr 2 RuO 4 . Many of these appear to imply contradictory conclusions concerning the symmetries of this state. Here we propose that these results can be reconciled if we assume that there is a near-degeneracy between a $${d}_{{x}^{2}-{y}^{2}}$$ d x 2 − y 2 (B 1 g in group theory nomenclature) and a $${g}_{xy({x}^{2}-{y}^{2})}$$ g x y ( x 2 − y 2 ) (A 2 g ) superconducting state. From a weak-coupling perspective, such an accidental degeneracy can occur at a point at which a balance between the on-site and nearest-neighbor repulsions triggers a d -wave to g -wave transition. 
    more » « less