skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1752791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The synthesis of vinyl alcohol copolymers is limited due to the poor radical reactivity of vinyl acetate (VAc), the traditional precursor to polyvinyl alcohol (PVA). Main group monomers such as BN 2‐vinylnaphthalene (BN2VN) have attracted attention as alternatives to VAc to form side chain hydroxyls via oxidation, but outstanding questions of molecular weight control remain. Herein we report systematic investigation of solvent, temperature, and initiator concentration as factors influencing BN2VN degree of polymerization. We find increased chain transfer to toluene, hypothesized to arise from differences in radical stabilization and reactivity by aromatic and BN aromatic rings. As a result of these combined efforts, high molecular weight (Mw ~ 105 g mol−1) BN2VN homopolymers and BN2VN‐styrene copolymers were obtained. 
    more » « less
  2. Benzylic cations and anions are implicated in the mechanism of critical organic transformations, such as styrene polymerization. We investigate the influence of BN for CC bond substitution on the reactivity of benzylic ions and the effect on BN 2-vinylnaphthalene (BN2VN) ionic polymerization. Calculations suggest that the proximity of a N donor to a cation influences the stability of a BN benzylic cation, rationalizing unsuccessful protonation of BN2VN. Organolithium reagents undergo clean nucleophilic aromatic substitution with BN2VN and related BN naphthalenes via a hypothesized associative mechanism. These results suggest design principles for main group aromatic substitution. 
    more » « less