skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1753749

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CRISPR-Cas editing systems have proved to be powerful tools for functional genomics research, but their effectiveness in many non-model species remains limited. In the potato and tomato pathogen Phytophthora infestans, an editing system was previously developed that expresses the Lachnospiracae bacterium Cas12a endonuclease (LbCas12a) and guide RNA from a DNA vector. However, the method works at low efficiency. Based on a hypothesis that editing is constrained by a mismatch between the optimal temperatures for P. infestans growth and endonuclease catalysis, we tested two strategies that increased the frequency of editing of two target genes by about ten-fold. First, we found that editing was boosted by a mutation in LbCas12a (D156R), which had been reported to expand its catalytic activity over a broader temperature range. Second, we observed that editing was enhanced by transiently incubating transformed tissue at a higher temperature. These modifications should make CRISPR-Cas12a more useful for interrogating gene and protein function in P. infestans and its relatives, especially species that grow optimally at lower temperatures. 
    more » « less
  2. null (Ed.)
  3. Rokas, Antonis (Ed.)
    ABSTRACT The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads. 
    more » « less
  4. Phytophthora species cause diseases that threaten agricultural, ornamental, and forest plants worldwide. Explorations of the biology of these pathogens have been aided by the availability of genome sequences, but much work remains to decipher the roles of their proteins. Insight into protein function can be obtained by visualizing them within cells, which has been facilitated by recent improvements in fluorescent protein and microscope technologies. Here, we describe strategies to permit investigators to generate strains of Phytophthora that express fluorescently tagged proteins and study their localization during growth in artificial media and during plant infection. 
    more » « less